Test #1 Solution

Date: 02/05/2013 Name: _____

NOTE: You must show all work to earn credit.

1. (20 points) Let $\vec{u} = \overrightarrow{PQ}$ and $\vec{v} = \overrightarrow{PR}$, where P = (-2, -1, 1), Q = (2, -4, 1), and R = (1, -1, 5). Find (1) the norm of $\vec{u} - \vec{v}$, (2) the angle between \vec{u} and \vec{v} , (3) the dot product of \vec{u} and \vec{v} , and (4) the cross product of \vec{u} and \vec{v} .

Solution:

It's easy to get $\vec{u} = \overrightarrow{PQ} = \langle 4, -3, 0 \rangle$, and $\vec{v} = \overrightarrow{PR} = \langle 3, 0, 4 \rangle$.

- (1) $\vec{u} \vec{v} = \langle 4, -3, 0 \rangle \langle 3, 0, 4 \rangle = \langle 1, -3, -4 \rangle$. Therefore, the norm is equal to $\|\vec{u} \vec{v}\| = \sqrt{1^2 + (-3)^2 + (-4)^2} = \sqrt{26}$.
- (2) Let θ be the angle between \vec{u} and \vec{v} . Then

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{\langle 4, -3, 0 \rangle \cdot \langle 3, 0, 4 \rangle}{\sqrt{4^2 + (-3)^2 + 0^2} \sqrt{3^2 + 0^2 + 4^2}} = \frac{12}{25}.$$

Therefore, $\theta = \arccos \frac{12}{25} \approx 61.31^{\circ}$.

- (3) $\vec{u} \cdot \vec{v} = \langle 4, -3, 0 \rangle \cdot \langle 3, 0, 4 \rangle = 12$.
- $(4) \ \vec{u} \times \vec{v} = \langle 4, -3, 0 \rangle \times \langle 3, 0, 4 \rangle = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 4 & -3 & 0 \\ 3 & 0 & 4 \end{vmatrix} = -12\vec{i} 16\vec{j} + 9\vec{k}.$

2. (12 points) Let $\vec{u} = \langle 3, -2, 1 \rangle$ and $\vec{v} = \langle 3, 4, 12 \rangle$. Find (1) the projection of \vec{u} onto \vec{v} , and (2) the vector component of \vec{u} orthogonal to \vec{v} .

Solution:

(1) The projection of $\vec{u} = \langle 3, -2, 1 \rangle$ onto $\vec{v} = \langle 3, 4, 12 \rangle$ is $\text{proj}_{\vec{v}} \ \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}\right) \vec{v} = \left(\frac{\langle 3, -2, 1 \rangle \cdot \langle 3, 4, 12 \rangle}{\|\langle 3, 4, 12 \rangle\|^2}\right) \langle 3, 4, 12 \rangle = \frac{13}{169} \langle 3, 4, 12 \rangle.$ Therefore, $\text{proj}_{\vec{v}} \ \vec{u} = \left(\frac{3}{13}, \frac{4}{13}, \frac{12}{13}\right)$.

(2) The vector component of \vec{u} orthogonal to \vec{v} is

$$\vec{u} - \text{proj}_{\vec{v}} \vec{u} = \langle 3, -2, 1 \rangle - \langle \frac{3}{13}, \frac{4}{13}, \frac{12}{13} \rangle = \langle \frac{36}{13}, -\frac{30}{13}, \frac{1}{13} \rangle$$

3. (12 points) Find a set of symmetric equations for the line that passes through the point (0, 1, 4), and is perpendicular to $\vec{u} = \langle 2, -5, 1 \rangle$ and $\vec{v} = \langle -3, 1, 4 \rangle$.

Solution:

The direction vector of the line is orthogonal to \vec{u} and \vec{v} . So we can take $\vec{u} \times \vec{v}$ as a direction vector.

$$\vec{u} \times \vec{v} = \langle 2, -5, 1 \rangle \times \langle -3, 1, 4 \rangle = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -5 & 1 \\ -3 & 1 & 4 \end{vmatrix} = -21\vec{i} - 11\vec{j} - 13\vec{k}.$$

Therefore, a set of symmetric equations for the line can be as follows:

$$\frac{x-0}{-21} = \frac{y-1}{-11} = \frac{z-4}{-13}$$
.

Note: One can get other sets of equations, e.g., $\frac{x}{21} = \frac{y-1}{11} = \frac{z-4}{13}$, or $\frac{x}{42} = \frac{y-1}{22} = \frac{z-4}{26}$.

4. (12 points) Find an equation of the plane that passes through the point (-2, 3, 1) and is perpendicular to (3, -1, 1).

Solution:

The normal vector of the plane is (3, -1, 1), and the point in the plane is (-2, 3, 1). Therefore, an equation of this plane in standard form can be:

$$3(x+2) - (y-3) + (z-1) = 0.$$

Note: One can simplify this equation to get an equation in general form: 3x - y + z + 8 = 0.

5. (12 points) An object is pulled 8 feet across the floor using a force of 75 pounds. The direction of the force is 30° above the horizontal. Find the work done.

Solution:

Let \vec{F} denote the force, \overrightarrow{PQ} be the vector of the displacement (directed distance), and θ be the angle between \vec{F} and \overrightarrow{PQ} .

The work can be evaluated by the formula:

$$W = \left\| \operatorname{proj}_{\overrightarrow{PO}} \vec{F} \right\| \left\| \overrightarrow{PQ} \right\| = \left(\left\| \vec{F} \right\| \cos \theta \right) \left\| \overrightarrow{PQ} \right\| = (75 \cdot \cos 30^{\circ}) \cdot 8 = 300\sqrt{3}$$

Therefore, the work done is $300\sqrt{3} \approx 519.6$ foot-pounds.

6. (12 points) Convert the point $(\sqrt{3}, 0, -1)$ in rectangular coordinates into (1) cylindrical coordinates, and (2) spherical coordinates.

Solution:

Given
$$x = \sqrt{3}$$
, $y = 0$, $z = -1$.

- (1) In cylindrical coordinates (r, θ, z) , $r = \sqrt{x^2 + y^2} = \sqrt{3}$, $\theta = \arctan \frac{y}{x} = 0$, and z = -1. Therefore, $(r, \theta, z) = (\sqrt{3}, 0, -1)$, or $(\sqrt{3}, 0^\circ, -1)$.
- (2) In spherical coordinates (ρ, θ, φ) , $\rho = \sqrt{x^2 + y^2 + z^2} = 2$, $\theta = \arctan \frac{y}{x} = 0$, and $\varphi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right) = \arccos\left(\frac{-1}{2}\right) = \frac{2\pi}{3}$. Therefore, $(\rho, \theta, \varphi) = \left(2, 0, \frac{2\pi}{3}\right)$, or $(2, 0^\circ, 120^\circ)$.
- 7. (20 points) Determine whether each statement is *true* or *false*.
 - (a) If \vec{u} and \vec{v} are orthogonal to \vec{w} , then $\vec{u} + \vec{v}$ is orthogonal to \vec{w} .

Answer:___true___

(b) If the dot product $\vec{u} \cdot \vec{v} = 0$, then \vec{u} is orthogonal to \vec{v} .

Answer:___true___

(c) If \vec{u} and \vec{v} have the same magnitude but opposite directions, then $\vec{u} + \vec{v} = 0$.

Answer:___*false*__

(d) Every pair of lines in space are either intersecting or parallel.

Answer:____false___

(e) In spherical coordinates, the equation $\theta = c$ represents an entire plane.

Answer:____false___

(f) In cylindrical coordinates, the equation $\theta = c$ represents a line.

Answer:___*false*__

(g) The rectangular equation $x^2 + y^2 + z^2 - 9z = 0$ can be converted to spherical equation $\rho = 9 \sin \varphi$.

Answer:____false___

Answer:___false__

(h) $x^2 + 2y^2 - 3z^2 = 1$ represents an equation of elliptic cone.

Answer: true

(i) The distance between (2, 3, 1) and x + y + z - 4 = 0 is greater than 1.

(j) Given two nonzero orthogonal vectors, the dot product of those two vectors is $\vec{0}$.

Answer:____false___