Quiz #4 Solution

Date: <u>02/26/2013</u> Name: _____

NOTE: You must show all work to earn credit.

1. (8 points) Describe the level curves of the function f(x, y) = xy. Sketch the level curves for the given c-values: $c = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6$.

Solution:

Given f(x, y) = xy. The level curves are hyperbolas of the form xy = c, where $c = \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, \pm 6$. The pictures of these 12 pairs of curves are hyperbolas that have x- and y-axis as asymptotes.

2. (8 points) Find the limit (if it exists). If the limit does not exist, explain why.

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy + yz + xz}{x^2 + y^2 + z^2}$$

Solution:

Let's consider the following two paths:

$$(1) x = y = 0;$$

(2)
$$x = y = z$$
.

Path (1):

$$\lim_{(x,y,z)\to(0,0,0)}\frac{xy+yz+xz}{x^2+y^2+z^2}=\lim_{(x,y,z)\to(0,0,0)}\frac{0\cdot 0+0\cdot z+0\cdot z}{0^2+0^2+z^2}=\lim_{(x,y,z)\to(0,0,0)}\frac{0}{z^2}=0$$

Path (2):

$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy+yz+xz}{x^2+y^2+z^2} = \lim_{(x,y,z)\to(0,0,0)} \frac{z\cdot z+z\cdot z+z\cdot z}{z^2+z^2+z^2} = \lim_{(x,y,z)\to(0,0,0)} \frac{3z^2}{3z^2} = 1$$

Since the limits along two different paths are different, the limit does not exist.

- 3. (8 points) Consider $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{xy}$.
 - (a) Determine (if possible) the limit along any line of the form $y = \alpha x$.
 - (b) Determine (if possible) the limit along the parabola $y = x^2$.
 - (c) Does the limit exist? Explain.

Solution:

(a) For y = ax, if $a \ne 0$, then

$$\lim_{(x,y)\to(0,0)} \frac{x^2 + y^2}{xy} = \lim_{(x,y)\to(0,0)} \frac{x^2 + (ax)^2}{x(ax)} = \lim_{(x,y)\to(0,0)} \frac{(1+a^2)x^2}{ax^2} = \frac{1+a^2}{a},$$
while if $a = 0$, then

$$\lim_{(x,y)\to(0,0)}\frac{x^2+y^2}{xy}=\lim_{(x,y)\to(0,0)}\frac{x^2+(0x)^2}{x(0x)}=\lim_{(x,y)\to(0,0)}\frac{x^2}{0},$$

which is undefined.

(b) For $y = x^2$,

$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{xy} = \lim_{(x,y)\to(0,0)} \frac{x^2+(x^2)^2}{x(x^2)} = \lim_{(x,y)\to(0,0)} \frac{1+x^2}{x},$$

which does not exist as the denominator approaches 0, but the numerator approaches 1.

- (c) Since some paths do not have limit, $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{xy}$ does not exist.
- 4. (6 points) Verify the limit by definition:

$$\lim_{(x,y)\to(0,0)} \frac{5x^2y}{x^2+y^2} = 0$$

Proof:

For any given $\varepsilon > 0$, we need to find δ in terms of ε , so that in the δ -neighborhood about (0,0), whenever $0 < \sqrt{x^2 + y^2} < \delta$, we always have $|f(x,y) - 0| < \varepsilon$.

Notice that

$$|f(x,y) - 0| = \left| \frac{5x^2y}{x^2 + y^2} \right| = 5|y| \left(\frac{x^2}{x^2 + y^2} \right) \le 5|y| \le 5\sqrt{x^2 + y^2} < \frac{5\delta}{x^2 + y^2}.$$

So, if we take $\varepsilon = 5\delta$, that is, $\delta = \varepsilon/5$, then whenever $0 < \sqrt{x^2 + y^2} < \delta$, we have $|f(x, y) - 0| < \varepsilon$.

It follows from the definition of limit that f(x, y) approaches 0 as $(x, y) \rightarrow (0, 0)$. QED (quod erat demonstrandum).