Quiz #2 Solution

Date: <u>01/29/2013</u> Name: _____

NOTE: You must show all work to earn credit.

- 1. (8 points) Given $\vec{u} = \langle 2, 1, 2 \rangle$ and $\vec{v} = \langle 0, 3, 4 \rangle$.
 - (a) Find the projection of \vec{u} onto \vec{v} ;
 - (b) Find the vector component of \vec{u} orthogonal to \vec{v} .

Solution:

Given $\vec{u} = \langle 2, 1, 2 \rangle$ and $\vec{v} = \langle 0, 3, 4 \rangle$.

(a)
$$\vec{w}_1 = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}\right) \vec{v} = \frac{11}{25} \langle 0, 3, 4 \rangle = \langle 0, \frac{33}{25}, \frac{44}{25} \rangle$$

(b)
$$\vec{w}_2 = \vec{u} - \vec{w}_1 = \langle 2, 1, 2 \rangle - \langle 0, \frac{33}{25}, \frac{44}{25} \rangle = \langle 2, -\frac{8}{25}, \frac{6}{25} \rangle$$

2. (8 points) Given A(1, 1, 1), B(2, 3, 4), C(6, 5, 2), and D(7, 7, 5). Verify that the points are the vertices of a parallelogram, and find its area.

Solution:

Given
$$A(1, 1, 1)$$
, $B(2, 3, 4)$, $C(6, 5, 2)$, and $D(7, 7, 5)$. We can find the vectors: $\overrightarrow{AB} = \langle 1, 2, 3 \rangle$, $\overrightarrow{AC} = \langle 5, 4, 1 \rangle$, $\overrightarrow{CD} = \langle 1, 2, 3 \rangle$, and $\overrightarrow{BD} = \langle 5, 4, 1 \rangle$.

Obviously $\overrightarrow{AB} = \overrightarrow{CD}$, and $\overrightarrow{AC} = \overrightarrow{BD}$. So the figure \overrightarrow{ABCD} is a parallelogram. As \overrightarrow{AB} and \overrightarrow{AC} are adjacent sides, we can use the cross product of these two vectors to find the area of the parallelogram.

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 3 \\ 5 & 4 & 1 \end{vmatrix} = -10\vec{i} + 14\vec{j} - 6\vec{k}$$

Therefore, the area

$$A = \|\overrightarrow{AB} \times \overrightarrow{AC}\| = \|-10\overrightarrow{i} + 14\overrightarrow{j} - 6\overrightarrow{k}\| = \sqrt{332} = 2\sqrt{83} \approx 18.22$$

3. (7 points) Find the distance between the point Q(2, 8, 4) and the plane 2x + y + z = 5.

Solution:

Given the point Q(2, 8, 4) and the plane 2x + y + z = 5.

A normal vector of the plane is: $\vec{n} = \langle 2, 1, 1 \rangle$ (Note: you can choose any vector that is parallel to this one). Obviously P(0, 0, 5) is in the plane (Note: you can choose any other point in the plane, as long as it satisfies the equation of the plane).

Now $\overrightarrow{PQ} = \langle 2, 8, -1 \rangle$. Using the distance formula between a point and a plane,

$$D = \frac{\left| \overrightarrow{PQ} \cdot \overrightarrow{n} \right|}{\|\overrightarrow{n}\|} = \frac{\left| \langle 2, 8, -1 \rangle \cdot \langle 2, 1, 1 \rangle \right|}{\|\langle 2, 1, 1 \rangle\|} = \frac{11}{\sqrt{6}} = \frac{11\sqrt{6}}{6}$$

Therefore, the distance between the point Q(2,8,4) and plane 2x + y + z = 5 is $\frac{11\sqrt{6}}{6}$.

4. (7 points) Find the distance between point P(1, -2, 4) and the line given by equations x = 2t, y = t - 3, z = 2t + 2.

Solution:

Obviously $\vec{u} = \langle 2, 1, 2 \rangle$ is the direction vector for the line. Let t = 0, we get a point on the line Q(0, -3, 2). Then $\overrightarrow{QP} = \langle 1, 1, 2 \rangle$.

Let us calculate $\overrightarrow{QP} \times \overrightarrow{u} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 1 & 2 \\ 2 & 1 & 2 \end{vmatrix} = \langle 0, 2, -1 \rangle.$

Using the distance formula between a point and a line,

$$D = \frac{\|\overrightarrow{QP} \times \overrightarrow{u}\|}{\|\overrightarrow{u}\|} = \frac{\|\langle 0, 2, -1 \rangle\|}{\|\langle 2, 1, 2 \rangle\|} = \frac{\sqrt{5}}{\sqrt{9}} = \frac{\sqrt{5}}{3}$$

Therefore, the distance between the point P(1, -2, 4) and the given line is $\frac{\sqrt{5}}{3}$.