Lecture 34

15.5. Parametric Surfaces

- **Goals:** (1) Understand the definition of and sketch a parametric surface.
 - (2) Find a set of parametric equations to represent a surface.
 - (3) Find a normal vector and a tangent plane to a parametric surface.
 - (4) Find the area of a parametric surface.

Questions:

- How to represent a curve (in plane or space) parametrically?
- How to find normal vector of a curve?

15.5.1. Sketching surfaces using a set of parametric equations

A <u>curve</u> can be represented by using one parameter t:

$$\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$$
, which can be called **parametric curve**. And $x = x(t)$, $y = y(t)$, $z = z(t)$

can be called **parametric equations for the curve**. Notice that if the curve is in the plane, then $\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j}$.

Similarly, a surface can be represented by using two parameters u, v.

(1) Definition:

Let x, y, and z be functions of u and v that are continuous on a domain D in the uv-plane. The set of points (x, y, z) given by

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

is called a **parametric surface**. The equations (components)

$$x = x(u, v),$$
 $y = y(u, v),$ $z = z(u, v)$

are called **parametric equations for the surface**. See Figure 15.35 for a visual example.

<u>Note</u>: the parametric representations of surfaces or curves are *not* unique. To identify a surface, sometimes we use trigonometric identities to eliminate the parameters. Try exercises 7-10.

(2) Examples 1, 2: sketching a parametric surface (p. 1103) For fixed u, $\vec{r}(u,v)$ traces out latitude circles. For fixed v, $\vec{r}(u,v)$ traces out longitude semi-circles as $0 \le u \le \pi$. Try exercises 1-6, 17-20

15.5.2. Finding parametric equations for surfaces

(1) Example 3: representing a surface parametrically (p. 1104) Try exercises 21-30

(2) Example 4: representing a surface of revolution parametrically (p.1104) Try exercises 31--34

15.5.3. Normal vectors and tangent planes

(1) Normal vector formula:

Let S be a smooth parametric surface

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

defined over an open region D in the uv-plane. Let (u_0, v_0) be a point in D. A normal vector at the point

$$(x_0, y_0, z_0) = (x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$$

is given by

$$\vec{N} = \vec{r}_u'(u_0, v_0) \times \vec{r}_v'(u_0, v_0) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix}.$$

(2) Example 5: finding a tangent plane to a parametric surface using a normal vector (p. 1106)

Try exercises 31-34

15.5.4. Area of a parametric surface

(1) Surface area formula:

Let S be a smooth parametric surface

$$\vec{r}(u,v) = x(u,v)\vec{i} + y(u,v)\vec{j} + z(u,v)\vec{k}$$

defined over an open region D in the uv-plane. If each point on the surface S corresponds to exactly one point in the domain D, then the **surface area** of S is given by

Surface area =
$$\iint\limits_{S} dS = \iint\limits_{D} \|\vec{N}\| dA = \iint\limits_{D} \|\vec{r}_{u}' \times \vec{r}_{v}'\| dA$$

where

$$\vec{r}_{u}' = \frac{\partial x}{\partial u}\vec{i} + \frac{\partial y}{\partial u}\vec{j} + \frac{\partial z}{\partial u}\vec{k}$$
, and $\vec{r}_{v}' = \frac{\partial x}{\partial v}\vec{i} + \frac{\partial y}{\partial v}\vec{j} + \frac{\partial z}{\partial v}\vec{k}$.

(2) Example 6: finding surface area (p. 1107) Try exercises 39-46

15.5.5. Homework Set #34

- Read 15.5 (pages 1102-1108).
- Do exercises on pages 1109-1111: 1-6, 7, 13, 15, 19, 21, 23, 25, 27, 29, 31, 33, 39, 41