Lecture 28

14.6. Triple Integrals and Applications

- Goals: (1) Use a triple integral to find the volume of a solid region.
 - (2) Find the center of mass and moments of inertia of a solid region.

Questions:

- What is Fubini's Theorem for double integrals?
- How to find the center of mass for planar region?

14.6.1. Triple integrals

(1) Definition of triple integral:

If f is a continuous function over a bounded solid region Q, then the **triple** integral of f over Q is defined as

$$\iiint\limits_{Q} f(x, y, z) dV = \lim_{\|\Delta\| \to 0} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta V_i$$

provided the limit exists.

In particular, the volume of the solid region Q is given by

Volume of
$$Q = \iiint_{O} dV$$

(2) Properties of triple integrals

1.
$$\iiint\limits_{Q} cf(x,y,z)dV = c \iiint\limits_{Q} f(x,y,z)dV$$

$$2. \iiint\limits_{Q} [f(x,y,z) \pm g(x,y,z)] dV = \iiint\limits_{Q} f(x,y,z) dV \pm \iiint\limits_{Q} g(x,y,z) dV$$

3.
$$\iiint\limits_{Q} f(x,y,z)dV = \iiint\limits_{Q_1} f(x,y,z)dV + \iiint\limits_{Q_2} f(x,y,z)dV$$

where Q is union of two non-overlapping solid subregions Q_1 and Q_2 .

(3) Fubini's Theorem on triple integrals

Let f be continuous on a solid region Q defined by

$$a \le x \le b$$
, $h_1(x) \le y \le h_2(x)$, $g_1(x,y) \le z \le g_2(x,y)$ where h_1, h_2, g_1 , and g_2 are continuous functions. Then,

$$\iiint\limits_{Q} f(x,y,z)dV = \int_{a}^{b} \int_{h_{1}(x)}^{h_{2}(x)} \int_{g_{1}(x,y)}^{g_{2}(x,y)} f(x,y,z)dz \, dy \, dx.$$

<u>Note</u>: there are 5 more similar iterated triple integral formulas. Can you list all of them?

- (4) Example 1: evaluating triple integral (p. 1028) Try exercises 1-8
- (5) Example 2: finding volume by using triple integral (p. 1029) Try exercises 23-26
- (6) Example 3: changing the order of integration (p. 1030) Try exercises 27-32
- (7) Example 4: determining the limits of integration (p. 1031) Try exercises 13-18

14.6.2. Center of mass

(1) Definition of mass:

If ρ is a continuous density function on a solid region Q, then the mass m of the solid is given by

$$m = \iiint\limits_{Q} \rho(x, y, z) dV$$

Note: this is the same formula for triple integral.

(2) Define three moments of mass by triple integrals:

$$M_{yz} = \iiint_{Q} x \rho(x, y, z) dV$$

$$M_{zx} = \iiint_{Q} y \rho(x, y, z) dV$$

$$M_{xy} = \iiint_{Q} z \rho(x, y, z) dV$$

(3) The center of mass is given by

$$\bar{x} = \frac{M_{yz}}{m}, \qquad \bar{y} = \frac{M_{zx}}{m}, \qquad \bar{z} = \frac{M_{xy}}{m}$$

<u>Note</u>: if the density function is constant, then the center of mass is also called the **centroid**.

(4) Example 5: finding the center of mass for solid region (p. 1033) Try exercises 39-44.

14.6.3. Moments of inertia

(1) First moments.

The moments of mass M_{yz} , M_{zx} , and M_{xy} are also called the **first** moments about yz-plane, zx-plane, and xy-plane, respectively.

(2) Second moments are also called the **moments of inertia** of a solid region about x-axis, y-axis, and z-axis, respectively:

$$I_x = \iiint\limits_{Q} (y^2 + z^2)\rho(x, y, z)dV$$

$$I_y = \iiint\limits_{Q} (z^2 + x^2)\rho(x, y, z)dV$$

$$I_z = \iiint\limits_{Q} (x^2 + y^2)\rho(x, y, z)dV$$

<u>Note</u>: usually we find three intermediate triple integrals in order to find the above moments of inertia:

$$I_{yz} = \iiint_{Q} x^{2} \rho(x, y, z) dV$$

$$I_{zx} = \iiint_{Q} y^{2} \rho(x, y, z) dV$$

$$I_{xy} = \iiint_{Q} z^{2} \rho(x, y, z) dV$$

Then $I_x = I_{zx} + I_{xy}$, $I_y = I_{xy} + I_{yz}$, and $I_z = I_{yz} + I_{zx}$.

(3) Example 6: finding the moments of inertia (p. 1034) Try exercises 55-58

14.6.4. **Homework Set #28**

- Read 14.6 (pages 1027-1034).
- Do exercises on pages 1035-1037: 1, 3, 5, 7, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 61, 63