2013 Spring

14.1. Iterated Integrals and Area in the Plane

Goals: (1) Evaluate an iterated integral.

(2) Use an iterated integral to find the area of a plane region.

Questions:

- What are the common techniques for integration?
- How to find the area of a region using definite integral?

14.1.1. Iterated integrals

- (1) Two single integrals:
 - x is the variable, y is fixed

$$\int_{h_1(y)}^{h_2(y)} f_x(x,y) dx = f(x,y) \Big]_{h_1(y)}^{h_2(y)} = f(h_2(y),y) - f(h_1(y),y)$$

• y is the variable, x is fixed

$$\int_{g_1(x)}^{g_2(x)} f_y(x, y) dy = f(x, y) \Big]_{g_1(x)}^{g_2(x)} = f(x, g_2(x)) - f(x, g_1(x))$$

- Example 1 (p. 985)
- Try Exercises 1-10
- (2) Iterated integrals:

• y first (inside), x second (outside)
$$\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f_{y}(x,y) dy dx$$

•
$$x$$
 first (inside), y second (outside)
$$\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f_{x}(x, y) dx dy$$

- Example 2 (p. 985)
- Try Exercises 11-30

14.1.2. Area of a plane region

(1) Vertically simple region (see Figure 14.2)

$$A = \int_{a}^{b} [g_{2}(x) - g_{1}(x)] dx = \int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} dy dx$$

- Examples 3, 4 (p. 987) Try exercises 35-38, 39-46.
- (2) Horizontally simple region (see Figure 14.3)

$$A = \int_{c}^{d} [h_{2}(y) - h_{1}(y)] dy = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} dx dy$$

- Example 5 (p. 988) Try exercises 47-54, 55-58, 61-64
- <u>Note</u>: both orders should result in the same area, though one order may be much easier to evaluate.
- (3) Almost-simple region: sum of two simple regions

$$A = A_1 + A_2$$

• Example 6 (p. 989) Try exercises 59, 60

14.1.3. **Homework Set #23**

- Read 14.1 (pages 984-989).
- Do exercises on pages 990-991: 5, 7, 9, 13, 15, 17, 19, 21, 23, 25, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 55, 59, 61, 63, 67, 69, 71, 87, 88