# Lecture 20

## 13.8. Extrema of Functions of Two Variables

- **Goals:** (1) Find absolute and relative extrema of a function of two variables.
  - (2) Use the Second Partials Test to find relative extrema of a function of two variables.

### Questions:

- What are relative extrema, and absolute extrema of a function y = f(x)?
- How to find relative extrema of a function y = f(x)?

#### 13.8.1. Relative extrema

Use the gradient and second-order partial derivatives to study the relative extrema (maximum and/or minimum) of a function of two variables.

- (1) Definition of Relative extrema:
  - Let f be a function defined on a region R that contains  $(x_0, y_0)$ . Then
  - $(x_0, y_0)$  is called a *relative maximum point* if  $f(x, y) \ge f(x_0, y_0)$  for all (x, y) in an open disk containing  $(x_0, y_0)$ .
  - $(x_0, y_0)$  is called a *relative minimum point* if  $f(x, y) \le f(x_0, y_0)$  for all (x, y) in an open disk containing  $(x_0, y_0)$ .
  - $(x_0, y_0)$  is called a *critical point* if  $\nabla f(x_0, y_0) = \vec{0}$  (that is, both  $f_x(x_0, y_0) = 0$  and  $f_y(x_0, y_0) = 0$ ) or at least one of them does not exist.
- (2) When do <u>relative</u> extrema occur? If f has a relative extremum at  $(x_0, y_0)$  on an open region R, then  $(x_0, y_0)$  must be a critical point of f.
- (3) Examples 1, 2: finding relative extrema (p. 956)
  - Try exercises 7-16

#### 13.8.2. The second partials test

(1) Let f have continuous second partial derivatives on an open region containing a point (a, b) such that  $\nabla f(a, b) = \vec{0}$  (critical point). Let

$$d = \begin{vmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{vmatrix} = f_{xx}(a,b)f_{yy}(a,b) - [f_{xy}(a,b)]^{2}.$$

- If d > 0 and  $f_{xx}(a, b) > 0$ , then f has relative minimum at (a, b)
- If d > 0 and  $f_{xx}(a, b) < 0$ , then f has relative maximum at (a, b)
- If d < 0, then (a, b, f(a, b)) is a saddle point.
- If d = 0, then the test fails (it is inconclusive).

Notice that  $f_{xy}(a, b) = f_{yx}(a, b)$  because they are continuous by assumption.

- (2) Examples 3, 4: using the second partials test (p. 958)
  - Try exercises 21-28, 31-34

#### 13.8.3. Absolute extrema

(1) Definition of Absolute extrema:

Let f be a <u>continuous</u> function defined on a <u>closed</u> region R that contains  $(x_0, y_0)$ . Then

- $(x_0, y_0)$  is called an *absolute maximum point* if  $f(x, y) \ge f(x_0, y_0)$  for all (x, y) in R.
- $(x_0, y_0)$  is called an *absolute minimum point* if  $f(x, y) \le f(x_0, y_0)$  for all (x, y) in R.
- (2) When do absolute extrema occur?

If f(x, y) is a continuous function on a <u>closed bounded</u> region R, then the function has at least one absolute *minimum* point, and at least one absolute *maximum* point. A region is **bounded** if it is a subregion of a closed disk in the plane.

- (3) Absolute extrema of a function can only occur in two ways:
  - Some relative extrema are absolute extrema.
  - Some boundary points of the domain are absolute extrema.
- (4) Example 5 (p. 959)
  - Try exercises 45-54

#### 13.8.4. **Homework Set #20**

- Read 13.8 (pages 954-959).
- Do exercises on pages 960-961:

7, 9, 11, 13, 15, 21, 23, 25, 27, 31, 33, 45, 49, 51, 53, 61-64