Lecture 16

13.4. Differentials

- Goals: (1) Understand the concepts of increments and differentials.
 - (2) Extend the concept of differentiability to a function of two variables.
 - (3) Use the differential as an approximation.

Questions:

Q: What is the definition of the differential of a function y = f(x)?
A: dy = f(x)dx

13.4.1. Increments and differentials

(1) Definition: The *increment* of z = f(x, y) is given by:

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$$

where Δx , Δy are increments of x and y, respectively.

(2) Definition: The *differentials* of the <u>independent</u> variables x and y are $dx = \Delta x$ and $dy = \Delta y$. The *total differential* of the <u>dependent</u> variable z is

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = f_x(x, y)dx + f_y(x, y)dy$$

- (3) Example 1: finding the total differential (p. 918)
 - Exercises 1-10

13.4.2. Differentiability

(1) z = f(x, y) is **differentiable** at (x_0, y_0) if $\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \varepsilon_1 \Delta x + \varepsilon_2 \Delta y$

where both ε_1 and ε_2 approach 0 as $(\Delta x, \Delta y) \rightarrow (0, 0)$.

The function is *differentiable in a region* R if it is differentiable at each point in R.

- (2) If f is a function of x and y, where f_x and f_y are continuous in an open region R, then f is differentiable on R.
- (3) Differentiability implies continuity, but not the other way round. Therefore, non-Continuous implies non-Differentiable. See Example 5 (p. 922)
- (4) Example 2: showing that a function is differentiable (p. 919).

13.4.3. Approximation by differentials

(1) Recall: $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ and $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y)$. $\Delta z \approx dz$ is called a *linear approximation*.

- (2) Example 3: using differential as an approximation (p. 920).
 - Try exercises 11-16, 17-20

13.4.4. Differentials of functions in three variables

(1) Definition: The *increment* of w = f(x, y, z) is given by: $\Delta w = f(x + \Delta x, y + \Delta y, z + \Delta z) - f(x, y, z)$

where Δx , Δy , Δz are increments of x y, and z, respectively.

- (2) w = f(x, y, z) is *differentiable* at (x, y, z) if $\Delta w = f_x(x, y, z)\Delta x + f_y(x, y, z)\Delta y + f_z(x, y, z)\Delta z + \varepsilon_1\Delta x + \varepsilon_2\Delta y + \varepsilon_3\Delta z$ where ε_1 , ε_2 and ε_3 approach 0 as $(\Delta x, \Delta y, \Delta z) \rightarrow (0, 0, 0)$.
- (3) If f is a function of x, y, and z, where f, f_x , f_y , and f_z are continuous in an open region R, then f is differentiable on R.
- (4) Example 4: error analysis Try exercises 25-40

13.4.5. Applications

Exercise 36.

- (a) Using the law of cosines: $a \approx 107.3$ ft.
- (b) $da \approx \pm 8.27 \text{ ft.}$

13.4.6. **Homework Set #16**

- Read 13.4 (pages 918-922).
- Do exercises on pages 923-924: 1, 3, 5, 7, 9, 11, 13, 17, 19, 25, 27, 35, 37