Lecture 15

13.3. Partial Derivatives

- **Goals:** (1) Find and use partial derivatives of a function of two variables.
 - (2) Find and use partial derivatives of a function of three or more variables.
 - (3) Find higher-order partial derivatives of a function of two or three variables.

Questions:

- What is the definition of the derivative of a function?
- How to find the derivative of a function y = f(x)?

13.3.1. Partial derivatives of a function of two variables

(1) Definition: The *first partial derivatives* of z = f(x, y) with respect to x and y are the functions f_x and f_y defined by the following limits:

$$f_x(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$f_y(x,y) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y) - f(x, y)}{\Delta y}$$

provided that the limits exist.

- (2) Notations for first partial derivatives
 - $f_x(x,y) = z_x = \frac{\partial}{\partial x} f(x,y) = \frac{\partial z}{\partial x}$
 - $f_y(x,y) = z_y = \frac{\partial}{\partial y} f(x,y) = \frac{\partial z}{\partial y}$
 - $f_x(a,b) = \frac{\partial z}{\partial x}\Big|_{(a,b)}$
 - $f_y(a,b) = \frac{\partial z}{\partial y}\Big|_{(a,b)}$
- (3) Geometric interpretation:
 - $\frac{\partial}{\partial x} f(a, b)$ represents the slope of the curve: y = b, z = f(x, y) at point (a, b, f(a, b)). That is, slope of surface in x-direction.
 - $\frac{\partial}{\partial y} f(a, b)$ represents the slope of the curve: x = a, z = f(x, y) at point (a, b, f(a, b)). That is, slope of surface in y-direction.
- (4) Examples 1, 2: finding partial derivatives (pp. 908-909)
 - Exercises 9-40, 45-52
- (5) Examples 3, 4: finding slopes of a surface in both directions (p. 910)
 - Exercises 53-54
- (6) Example 5: finding rates of change (p. 911)
 - Exercises

13.3.2. Partial derivatives of a function of three or more variables

The concept of partial derivatives can be extended naturally to functions of three or more variables.

(1) Let w = f(x, y, z) be a function in three variables. Then there will be three partial derivatives:

$$\frac{\partial w}{\partial x} = f_x(x, y, z) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}$$

$$\frac{\partial w}{\partial y} = f_y(x, y, z) = \lim_{\Delta y \to 0} \frac{f(x, y + \Delta y, z) - f(x, y, z)}{\Delta y}$$

$$\frac{\partial w}{\partial z} = f_z(x, y, z) = \lim_{\Delta z \to 0} \frac{f(x, y, z + \Delta z) - f(x, y, z)}{\Delta z}$$
(2) In general, let $w = f(x_1, x_2, ..., x_n)$. There are n partial derivatives:

$$\frac{\partial w}{\partial x_k} = f_{x_k}(x_1, x_2, \dots, x_n), k = 1, 2, \dots, n.$$

Note: to find the partial derivative with respect to one of the variables, hold the other variables constant and differentiate with respect to the given variable.

- (3) Example 6: finding partial derivatives (p. 912).
 - Try exercises 59-64, 65-70

13.3.3. Higher-order partial derivatives

(1) 2nd-order partial derivatives:

$$\bullet \quad \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

•
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$
•
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}$$

•
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y} = f_{yx}$$

•
$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2} = f_{yy}$$

Note: the middle two cases are called mixed partial derivatives.

- (2) Example 7: finding second partial derivatives (p. 913).
 - Try exercises 71-80
- (3) Example 8: finding higher-order partial derivatives of a function in three variables (p. 913).
 - Try exercises 93-96

13.3.4. **Homework Set #15**

- Read 13.3 (pages 908-913).
- Do exercises on pages 914-917: 9, 11, 13, 17, 19, 21, 23, 25, 27, 33, 35, 45, 51, 53, 59, 61, 65, 73, 75, 79, 81, 83, 93, 99, 129-132