Lecture 14

13.2. Limits and Continuity

- **Goals:** (1) Understand the definition of a neighborhood in the plane.
 - (2) Understand and use the definition of the limit of a function of two variables.
 - (3) Extend the concept of continuity to a function of two variables.
 - (4) Extend the concept of continuity to a function of three variables.

Questions:

- What is open interval, or closed interval on a number line?
- What is the definition of limit of a function y = f(x)? How to determine whether the limit exists or not?
- What is the definition of continuity of a function y = f(x)?

13.2.1. Neighborhoods in the plane

(1) Open disc:
$$\delta$$
-neighborhood about (x_0, y_0)
$$\left\{ (x,y) : \sqrt{(x-x_0)^2 + (y-y_0)^2} < \delta \right\}$$

Closed disc:

$$\left\{ (x, y) : \sqrt{(x - x_0)^2 + (y - y_0)^2} \le \delta \right\}$$

(2) Interior point & Boundary point

A point (x_0, y_0) in a plane region R is an *interior point* of R if there exists a δ -neighborhood about (x_0, y_0) that lies entirely in R. A point in R is called a **boundary point** if any δ -neighborhood about the point contains points inside R and points outside R. (See Figure 13.19)

(3) Open region

If every point in R is interior point, then R is called an *open region*.

(4) Closed region

If the region contains all its boundary points, then R is called a *closed* region.

13.2.2. Limit of a function of two variables

(1) Let z = f(x, y) be a function defined on an open disk of radius δ (excluding the center). Then the limit:

$$\lim_{(x,y)\to(x_0,y_0)}f(x,y)=L$$

if for each $\varepsilon > 0$, there is a $\delta > 0$ such that

whenever
$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$$
, $0 < |f(x, y) - L| < \varepsilon$.

(2) How to determine whether the limit exists?

- All paths/directions of (x, y) approaching (x_0, y_0) should lead to the same limit.
- Properties of limit:
 Scalar multiple, Sum, Difference, Product, Quotient.
- (3) Example 1: verifying a limit by definition (p. 899).
 - Try exercises 1-4
- (4) Example 2: verifying a limit by substitution (p. 900).
- (5) Example 3: verifying a limit by squeezing theorem (p. 900).
- (6) Example 4: showing nonexistence of a limit (p. 901).
 - Try exercises 5-8, 19-24

13.2.3. Continuity of a function of two variables

(1) A function z = f(x, y) is said to be *continuous at* (x_0, y_0) in an open region R if

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

If the function is continuous at every point in the open region R, then we say that the function is **continuous in the open region** R.

- (2) Removable and nonremovable discontinuity:
 - If $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ exists, but $\neq f(x_0,y_0)$, or $f(x_0,y_0)$ is not defined, then it is removable in both cases.
 - If $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ does not exist, then it is not removable.
- (3) Properties of continuity:

Scalar multiple, Sum, Difference, Product, Quotient, Composite. (pp. 902)

- (4) Example 5: testing for continuity (p. 903).
 - Try exercises 9-18, 25-28, 33-34, 41-48, 55-58

13.2.4. Continuity of a function of three variables

Open sphere:
$$\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} < \delta$$

(1) A function z = f(x, y, z) is said to be *continuous at* (x_0, y_0, z_0) in an open region R if

$$\lim_{(x,y,z)\to(x_0,y_0,z_0)} f(x,y,z) = f(x_0,y_0,z_0)$$

If the function is continuous at every point in the open region R, then we say that the function is **continuous in the open region** R.

- (2) Example 6: testing for continuity (p. 904).
 - Try exercises 49-54, 73-74

13.2.5. **Homework Set #14**

- Read 13.2 (pages 898-904).
- Do exercises on pages 904-907:
 7, 8, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 35, 43, 45, 53, 55, 57, 59, 61, 67, 71, 73, 79-82, 85