Lecture 8

12.1. Vector-Valued Functions

- **Goals:** (1) Analyze and sketch a space curve given by a vector-valued function.
 - (2) Extend the concepts of limits and continuity to vector-valued functions.

Questions:

• What is a plane curve?

12.1.1. Space curves

A *space curve C* is the set of all ordered triples (f(t), g(t), h(t)) where x = f(t), y = g(t), and z = h(t) are continuous functions on an interval I.

• Example: x = 2t, $y = 3t^2$ and $z = e^t$.

12.1.2. Vector-valued functions

- (1) Definition: Vector-valued function is (See Figure 12.1)
- a function (in plane) of the form:

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} = \langle f(t), g(t) \rangle$$

• a function (in space) of the form:

$$\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k} = \langle f(t), g(t), h(t) \rangle$$

Note: If not given, the domain of $\vec{r}(t)$ is the intersection of domains of f(t), g(t), h(t). Try exercises 1-8.

- (2) Examples 1, 2: Given vector-valued functions, sketching curves.
- Try exercises 27-42.
- (3) Examples 3, 4: Given graphs by rectangular equations, find vector-valued functions.
- Try exercises 49-56, 59-66.

12.1.3. Limits and continuity

- (1) Definition of limit of a vector-valued function (plane or space):
- If $\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j}$, then $\lim_{t\to a} \vec{r}(t) = [\lim_{t\to a} f(t)]\vec{i} + [\lim_{t\to a} g(t)]\vec{j}$, provided that the component limits exist.
- If $\vec{r}(t) = f(t)\vec{i} + g(t)\vec{j} + h(t)\vec{k}$, then $\lim_{t \to a} \vec{r}(t) = [\lim_{t \to a} f(t)]\vec{i} + [\lim_{t \to a} g(t)]\vec{j} + [\lim_{t \to a} h(t)]\vec{k}$, provided that the component limits exist.
- (2) Definition of continuity of a vector-valued function:
- A vector-valued function \vec{r} is continuous at the point given by t = a if the limit $\lim_{t\to a} \vec{r}(t) = \vec{r}(a)$.

- A vector-valued function \vec{r} is continuous on an interval I if it is continuous at every point in the interval.
- (3) Example 5: Continuity of vector-valued functions.
- Try exercises 69-74, 75-80

12.1.4. **Homework Set #8**

- Read 12.1 (pages 834-838).
- Do exercises on pages 839-841: 1, 3, 5, 7, 9, 11, 13, 21-24, 27, 29, 31, 35, 39, 49, 51, 59, 61, 63, 65, 69, 71, 73, 75, 77, 79, 93-96