Lecture 7

11.7. Cylindrical and Spherical Coordinates

- **Goals:** (1) Use cylindrical coordinates to represent surfaces in space.
 - (2) Use spherical coordinates to represent surfaces in space.

Questions:

• What is the polar coordinate system?

11.7.1. Cylindrical coordinates in space

- (1) In a cylindrical coordinate system, a point P in space can be represented by an ordered triple (r, θ, z) .
- (r, θ) is a polar representation of the projection of P in the xy-plane.
- z is the directed distance from (r, θ) to P.

See Figure 11.66.

- (2) How to convert from cylindrical to rectangular coordinates?
- $x = r \cos \theta$, $y = r \sin \theta$, z = z.

Note: The conversion is very simple!

- (3) How to convert from rectangular to cylindrical coordinates?
- $r^2 = x^2 + y^2$, $\tan \theta = \frac{y}{x}$, z = z.

Note: (0,0,0) is called the pole. The representation is not unique...

- (4) Examples 1, 2: Coordinates conversion.
- Try exercises 1-12.

11.7.2. Cylindrical surfaces in cylindrical coordinate system

- (1) Special cylindrical surfaces
- Vertical plane: $\theta = c$
- Horizontal plane: z = c
- Cylinder: r = c
- Paraboloid: $r = c\sqrt{z}$
- Cone: r = cz
- Hyperboloid: $r^2 = cz^2 + d$

Note: See Figures 11.69 and 11.70

- (2) Examples 3, 4: equation conversion between two systems.
- Try exercises 13-28.

11.7.3. Spherical coordinates in space

- (1) In a spherical coordinate system, a point P in space can be represented by an ordered triple (ρ, θ, φ) .
- ρ is the distance between P and the origin, where $\rho \ge 0$.

- θ is the same angle used in the cylindrical coordinates for $r \geq 0$.
- φ is the angle between the positive z-axis and the line segment \overline{OP} , where $0 \le \varphi \le \pi$.

See Figure 11.75.

(2) How to convert from spherical to rectangular coordinates?

$$x = \rho \sin \varphi \cos \theta$$
, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$

(3) How to convert from rectangular to spherical coordinates?

$$\rho^2 = x^2 + y^2 + z^2$$
, $\tan \theta = \frac{y}{x}$, $\varphi = \arccos\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$

- (4) Example 5: Rectangular-to-spherical conversion.
- Try exercises 29-34.

11.7.4. Coordinates conversion between cylindrical and spherical systems

(1) Spherical to cylindrical.

$$r^2 = \rho^2 \sin^2 \varphi$$
, $\theta = \theta$, $z = \rho \cos \varphi$

(2) Cylindrical to spherical.

$$\rho = \sqrt{r^2 + z^2}, \theta = \theta, \varphi = \arccos\left(\frac{z}{\sqrt{r^2 + z^2}}\right)$$

11.7.5. **Homework Set #7**

- Read 11.7 (pages 822-826).
- Do exercises on pages 827-828: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 99, 101, 121-124