Lecture 4

11.4. The Cross Product of Two Vectors in Space

- **Goals:** (1) Find the cross product of two vectors in space.
 - (2) Use the triple scalar product of three vectors in space.

Questions:

- What is matrix? Square matrix?
- What is the determinant of a matrix?

11.4.1. The cross product of two vectors

- (1) Definition:
- $\langle u_1, u_2, u_3 \rangle \times \langle v_1, v_2, v_3 \rangle$, the **cross product** of two vectors $\langle u_1, u_2, u_3 \rangle$ and $\langle v_1, v_2, v_3 \rangle$, is $\langle u_2 v_3 u_3 v_2, u_3 v_1 u_1 v_3, u_1 v_2 u_2 v_1 \rangle$
- Notes:
 - The cross product of two vectors in space... not plane!
 - The cross product is always a vector, not a scalar (number)!
- Another notation:

$$(u_1\vec{i} + u_2\vec{j} + u_3\vec{k}) \times (v_1\vec{i} + v_2\vec{j} + v_3\vec{k}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix},$$

where stands for the determinant of a square matrix.

- (2) Example 1: Finding the cross product
- Try exercises 1-10
- (3) Some algebraic properties of the cross product
- $\vec{u} \times \vec{v} = -\vec{v} \times \vec{u}$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $c(\vec{u} \times \vec{v}) = (c\vec{u}) \times \vec{v} = \vec{u} \times (c\vec{v})$
- Zero-multiplication: $\vec{0} \times \vec{v} = \vec{0}$. What about $\vec{v} \times \vec{0}$?
- Self-multiplication: $\vec{v} \times \vec{v} = \vec{0}$. Why?
- Triple scalar product: $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$
- (4) Some geometric properties of the cross product

Let \vec{u} and \vec{v} be nonzero vectors in space, and θ be the angle between \vec{u} and \vec{v} .

- $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v} . Why? Note: What about $\vec{i} \times \vec{j}$ and so on?
- $||\vec{u} \times \vec{v}|| = ||\vec{u}|| ||\vec{v}|| \sin \theta.$
 - Remark: That's the way to calculate the norm of the cross product.

- $\vec{u} \times \vec{v} = \vec{0}$ if and only if \vec{u} and \vec{v} are parallel (θ is 0 or π). Remark: That is, \vec{u} is a scalar multiple of \vec{v} .
- $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta$ is equal to the area of parallelogram having \vec{u} and \vec{v} as adjacent sides. See Figure 11.35.
- (5) Examples 2, 3 (page 795)
- Try exercises 11-16, 27-36.

11.4.2. Torque

(1) Definition:

If the point of application of the force \vec{F} is Q, the moment \vec{M} of force \vec{F} about P is called *torque*. It can be measured by the formula: $\vec{M} = \vec{PQ} \times \vec{F}$.

- (2) Example 4 (page 796)
- Try exercises 37-38.

11.4.3. Triple scalar product of three vectors in space

(1) Definition:

Let \vec{u} , \vec{v} , \vec{w} be three vectors in space. $\vec{u} \cdot (\vec{v} \times \vec{w})$ is called the *triple scalar product*.

(2) Algebraic property:

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}.$$

(3) Geometric property:

 $|\vec{u} \cdot (\vec{v} \times \vec{w})| = V$ is the volume of a parallelepiped with vectors $\vec{u}, \vec{v}, \vec{w}$ as the adjacent edges. See Figure 11.41

(4) Example 5 (page 797):

Finding volume by the triple scalar product.

• Try exercises 41-48.

11.4.4. Homework Set #4

- Read 11.4 (pages 792-797).
- Do exercises on pages 798-799: 1, 3, 5, 7, 9, 11, 12, 13, 15, 17, 19, 27, 29, 31, 33, 35, 37, 41, 43, 45, 47, 53, 54, 55, 56, 57, 58, 61