Lecture 3

11.3. The Dot Product of Two Vectors

- **Goals:** (1) Use properties of the dot product of two vectors.
 - (2) Find the angle between two vectors using the dot product.
 - (3) Find the direction cosines of a vector in space.
 - (4) Find the projection of a vector onto another vector.
 - (5) Use vectors to find the work done by a constant force.

Questions:

- Recall: what are the operations of vectors we have learned so far? Notice that the sum is a vector, so is the scalar multiplication.
- What is the Law of Cosines?

11.3.1. The dot product of two vectors

- (1) Definitions:
- Two-dim vectors: $\langle u_1, u_2 \rangle \cdot \langle v_1, v_2 \rangle$, the *dot product* of two vectors $\langle u_1, u_2 \rangle$ and $\langle v_1, v_2 \rangle$, is $u_1 v_1 + u_2 v_2$
- Three-dim vectors: $\langle u_1, u_2, u_3 \rangle \cdot \langle v_1, v_2, v_3 \rangle$, the **dot product** of two vectors $\langle u_1, u_2, u_3 \rangle$ and $\langle v_1, v_2, v_3 \rangle$, is $u_1v_1 + u_2v_2 + u_3v_3$
- Notes:
 - The dot product of two vectors... not of a number and a vector!
 - The dot product is always a scalar (number), not a vector!
- Advanced questions...
 - What is an *n*-dim vector?
 - What is the dot product of two *n*-dim vectors?
- (2) Some properties of the dot product
- Commutative: $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$
- Distributive: $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$
- Associative: $c(\vec{u} \cdot \vec{v}) = (c\vec{u}) \cdot \vec{v} = \vec{u} \cdot (c\vec{v})$
- Zero-multiplication: $\vec{0} \cdot \vec{v} = 0$. What about $\vec{v} \cdot \vec{0}$?
- Self-multiplication: $\vec{v} \cdot \vec{v} = ||\vec{v}||^2$. Why? What is $||\vec{v}||$?
- (3) Example 1: Finding dot products (page 784)
- Try exercises 9, 10

11.3.2. Angle between two vectors

- (1) Definitions (see Figure 11.24):
- The angle θ between two (nonzero) vectors is between 0 and π . That is, $0 \le \theta \le \pi$.

- $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$
- $\vec{u} \cdot \vec{v} = ||\vec{u}|| ||\vec{v}|| \cos \theta$
- \vec{u} and \vec{v} are called *orthogonal* if $\vec{u} \cdot \vec{v} = 0$.

<u>Note</u>: Two nonzero vectors \vec{u} and \vec{v} are orthogonal if and only if $\theta = \frac{\pi}{2}$.

Note: $\vec{0}$ is orthogonal to every vector!

(2) Example 2 (page 785)

Finding the angle between two vectors.

• Try exercises 11-26.

11.3.3. Direction cosines

See Figure 11.26 (page 786)

- (1) Definitions: Given $\vec{v} = \langle v_1, v_2, v_3 \rangle$.
- Direction angles: α , β , γ
- Direction cosines:

$$\cos \alpha = \frac{v_1}{\|\vec{v}\|}, \cos \beta = \frac{v_2}{\|\vec{v}\|}, \cos \gamma = \frac{v_3}{\|\vec{v}\|}$$

(2) Property:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$

- (3) Example 3 (page 786) Finding direction angles
- Try exercises 31-38.

11.3.4. Decomposition, Projections & Vector components

See Figure 11.29 (page 787)

- (1) Definition: Let \vec{u} and \vec{v} be nonzero vectors.
- If $\vec{u} = \vec{w}_1 + \vec{w}_2$, where \vec{w}_1 and \vec{w}_2 are orthogonal nonzero vectors, then we say that \vec{u} is **decomposed** into \vec{w}_1 and \vec{w}_2 . \vec{w}_1 and \vec{w}_2 are called **vector components**.
- Furthermore, if \vec{w}_1 is parallel to \vec{v} , then \vec{w}_1 is called the *projection* of \vec{u} onto \vec{v} , denoted by $\vec{w}_1 = \text{proj}_{\vec{v}} \vec{u}$. And $\text{proj}_{\vec{v}} \vec{u}$ is also called the <u>vector</u> component of \vec{u} along \vec{v} .
- $\vec{w}_2 = \vec{u} \text{proj}_{\vec{v}} \vec{u}$ is called the <u>vector component</u> of \vec{u} orthogonal to \vec{v} .
- (2) How to find $\text{proj}_{\vec{v}} \vec{u}$?

Answer:
$$\operatorname{proj}_{\vec{v}} \vec{u} = \left(\frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}\right) \vec{v}$$
.

- (3) Examples 4 & 5 (pages 787-788)

 Decomposing a vector into vector components.
- Try exercises 43-50.

11.3.5. Applications

- (1) Example 6 (page 788) Finding a force.
- Try exercise 71.
- (2) Example 7 (pageb789) Finding work.
- Try exercises 73-76.

11.3.6. Homework Set #3

- Read 11.3 (pages 783-789).
- Do exercises on pages 789-791: 1, 3, 5, 7, 9, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 41, 43, 45, 47, 49, 65, 67, 69, 71, 73, 75, 76, 77, 78