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Review for Final Exam 

(1) Problems from Chapter 11 will not be on the final exam. However, in order to 

understand Chapters 12, 13, 14, and 15, you should be familiar with the concepts in 

Chapter 11. 

 

(2) (12.1) Limits of vector-valued functions. 

(a) lim𝑡→𝑎 𝑟  𝑡 =  lim𝑡→𝑎 𝑓 𝑡  𝑖 +  lim𝑡→𝑎 𝑔 𝑡  𝑗  , provided that the component 

limits exist. 

(b) lim𝑡→𝑎 𝑟  𝑡 =  lim𝑡→𝑎 𝑓 𝑡  𝑖 +  lim𝑡→𝑎 𝑔 𝑡  𝑗 +  lim𝑡→𝑎 𝑕 𝑡  𝑘   , provided that 

the component limits exist. 

(3) (12.1) Continuity of vector-valued functions. 

A vector-valued function 𝑟  is continuous at the point given by 𝑡 = 𝑎 if the limit 

lim𝑡→𝑎 𝑟  𝑡 = 𝑟  𝑎 . 

(4) (12.2) Differentiate a vector-valued function. 

Differentiation of vector-value based functions can be done on a component-by-

component basis. That is, let 𝑟  𝑡 = 𝑓 𝑡 𝑖 + 𝑔 𝑡 𝑗 + 𝑕 𝑡 𝑘  . Then 

𝑟 ′ 𝑡 = 𝑓 ′ 𝑡 𝑖 + 𝑔′ 𝑡 𝑗 + 𝑕′ 𝑡 𝑘   
(5) (12.2) Integrate a vector-valued function. 

Integration of vector-value based functions can also be done on a component-by-

component basis. That is, let 𝑟  𝑡 = 𝑓 𝑡 𝑖 + 𝑔 𝑡 𝑗 + 𝑕 𝑡 𝑘  . Then 

 𝑟  𝑡 𝑑𝑡 =   𝑓 𝑡 𝑑𝑡 𝑖 +   𝑔 𝑡 𝑑𝑡 𝑗 +   𝑕 𝑡 𝑑𝑡 𝑘   

 𝑟  𝑡 𝑑𝑡
𝑏

𝑎

=   𝑓 𝑡 𝑑𝑡
𝑏

𝑎

 𝑖 +   𝑔 𝑡 𝑑𝑡
𝑏

𝑎

 𝑗 +   𝑕 𝑡 𝑑𝑡
𝑏

𝑎

 𝑘   

(6) (12.3) Describe the velocity and acceleration associated with a vector-valued 

function. 

Let 𝑟  𝑡 = 𝑥 𝑡 𝑖 + 𝑦 𝑡 𝑗  be a vector-valued function where 𝑥 𝑡  and 𝑦 𝑡  are 

twice-differentiable functions of 𝑡. Then 

Velocity = 𝑣  𝑡 = 𝑟 ′ 𝑡 = 𝑥′ 𝑡 𝑖 + 𝑦′ 𝑡 𝑗  

Speed =  𝑣  𝑡  =  𝑟 ′ 𝑡  =   𝑥′ 𝑡  2 +  𝑦′ 𝑡  2 

Acceleration = 𝑎  𝑡 = 𝑟 ′′ 𝑡 = 𝑥′′ 𝑡 𝑖 + 𝑦′′ 𝑡 𝑗  
(7) (12.3) Use a vector-valued function to analyze projectile motion. 

The position function for a projectile is: 

𝑟  𝑡 =  𝑣0 cos 𝜃 𝑡𝑖 +  𝑕 +  𝑣0 sin 𝜃 𝑡 −
1

2
𝑔𝑡2 𝑗  

where 𝑕 is the initial height, 𝑣0 is the initial speed, 𝜃 is the initial angle of elevation, 

and 𝑔 = 32 feet per second per second (or 9.81 meters per second per second) is 

the gravitational constant. 

(8) (12.4) Find a unit tangent vector at a point on space curve. 

Let 𝐶 be a smooth curve represented by 𝑟  on an open interval. The unit tangent 

vector at 𝑡 is defined to be 
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𝑇   𝑡 =
𝑟 ′ 𝑡 

 𝑟 ′ 𝑡  
, 𝑟 ′ 𝑡 ≠ 0   

(9) (12.4) Find a unit normal vector at a point on space curve. 

Let 𝐶 be a smooth curve represented by 𝑟  on an open interval. The principal unit 

normal vector at 𝑡 is defined to be 

𝑁    𝑡 =
𝑇  ′ 𝑡 

 𝑇  ′ 𝑡  
, 𝑇  ′ 𝑡 ≠ 0   

(10) (12.4) Find the tangential and normal components of acceleration. 

If 𝑁    𝑡  exists (which implies that 𝑇   𝑡  also exists), then 

𝑎  𝑡 = 𝑎𝑇  𝑇   𝑡 + 𝑎𝑁   𝑁    𝑡  

where 

𝑎𝑇  =  𝑣  ′ = 𝑎 ∙ 𝑇  =
𝑣 ∙ 𝑎 

 𝑣  
 

𝑎𝑁   =  𝑣   𝑇  ′ = 𝑎 ∙ 𝑁   =
 𝑣 × 𝑎  

 𝑣  
=   𝑎  2 − 𝑎𝑇  

2 

(11) (12.5) Find the arc length of a space curve. 

If 𝐶 is a smooth curve (in space) given by 𝑟  𝑡 = 𝑥 𝑡 𝑖 + 𝑦 𝑡 𝑗 + 𝑧 𝑡 𝑘  , on an 

interval  𝑎, 𝑏 , then the arc length of 𝐶 on the interval is: 

𝑠 =   𝑟 ′ 𝑡  
𝑏

𝑎

𝑑𝑡 =    𝑥′ 𝑡  2 +  𝑦′ 𝑡  2 +  𝑧′ 𝑡  2
𝑏

𝑎

𝑑𝑡 

(12) (12.5) Use the arc length parameter to describe a plane curve or space curve. 

Let 𝐶 be a smooth curve given by 𝑟  𝑡  on a closed interval  𝑎, 𝑏 . For 𝑎 ≤ 𝑡 ≤ 𝑏, 

the arc length function is given by: 

𝑠 𝑡 =   𝑟 ′ 𝑤  
𝑡

𝑎

𝑑𝑤 =    𝑥′ 𝑤  2 +  𝑦′ 𝑤  2 +  𝑧′ 𝑤  2
𝑡

𝑎

𝑑𝑤 

If we choose 𝑠 as the parameter, that is, 𝑟  𝑠 = 𝑥 𝑠 𝑖 + 𝑦 𝑠 𝑗 + 𝑧 𝑠 𝑘  , then 

 𝑟 ′ 𝑠  = 1. On the other hand, if  𝑟 ′ 𝑡  =
𝑑𝑠

𝑑𝑡
= 1, then 𝑡 must be the arc length 

parameter. Therefore, the parameter 𝑡 is the arc length parameter if and only if 

 𝑟 ′ 𝑡  = 1. 

(13) (12.5) Find the curvature of a curve at a point on the curve. 

(a) Let 𝐶 be a smooth curve given by 𝑟  𝑠  where 𝑠 is the arc length parameter. The 

curvature 𝐾 at 𝑠 is given by 

𝐾 =  
𝑑𝑇  

𝑑𝑠
 =  𝑇  ′ 𝑠   

(b) In general, if the parameter is 𝑡 (not necessary to be 𝑠), then the curvature at 𝑡 is 

given by 

𝐾 =
 𝑇  ′ 𝑡  

 𝑟 ′ 𝑡  
=

 𝑟 ′ 𝑡 × 𝑟 ′′ 𝑡  

 𝑟 ′ 𝑡  3
 

(c) In particular, if 𝐶 is given by a regular (rectangular coordinates) function 

𝑦 = 𝑓 𝑥 , then the curvature at 𝑃 𝑥, 𝑦  is given by 

𝐾 =
 𝑦′′ 

 1 +  𝑦′ 2 3/2
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(14) (12.5) Relationship among acceleration, speed, and curvature. 

𝑎  𝑡 =
𝑑2𝑠

𝑑𝑡2
𝑇  + 𝐾  

𝑑𝑠

𝑑𝑡
 

2

𝑁    

(15) (13.1) Sketch the graph of a function of two variables. 

Use traces in planes parallel to the coordinate planes. 

(16) (13.1) Sketch level curves for a function of two variables. 

Another way to visualize a function 𝑧 = 𝑓 𝑥, 𝑦  is to use a scalar field that is 

characterized by level curves 𝑓 𝑥, 𝑦 = 𝑐 (contour lines, or equipotential lines). 

(17) (13.1) Sketch level surfaces for a function of three variables. 

The concept of a level curve can be extended by one dimension to define a level 

surface. Given a function 𝑧 = 𝑓 𝑥, 𝑦, 𝑧 , the graph of the equation 𝑓 𝑥, 𝑦, 𝑧 = 𝑐 is 

called a level surface. 

(18) (13.2) Understand and use the definition of the limit of a function of two variables. 

How to determine whether the limit exists? All paths/directions of  𝑥, 𝑦  

approaching  𝑥0, 𝑦0  should lead to the same limit. 

(19) (13.2) Extend the concept of continuity to a function of two variables. 

(a) A function 𝑧 = 𝑓 𝑥, 𝑦  is said to be continuous at  𝑥0, 𝑦0  in an open region 𝑅 if 

lim
 𝑥,𝑦 → 𝑥0 ,𝑦0 

𝑓 𝑥, 𝑦 = 𝑓 𝑥0, 𝑦0  

(b) Removable and nonremovable discontinuity: 

If lim 𝑥,𝑦 → 𝑥0 ,𝑦0 𝑓 𝑥, 𝑦  exists, but  ≠ 𝑓 𝑥0, 𝑦0 , or 𝑓 𝑥0, 𝑦0  is not defined, then it 

is removable in both cases. 

If lim 𝑥,𝑦 → 𝑥0 ,𝑦0 𝑓 𝑥, 𝑦  does not exist, then it is not removable. 

(20) (13.3) Find and use partial derivatives of a function of two variables. 

The first partial derivatives of 𝑧 = 𝑓 𝑥, 𝑦  with respect to 𝑥 and 𝑦 are the functions 

𝑓𝑥  and 𝑓𝑦  defined by the following limits: 

𝑓𝑥 𝑥, 𝑦 = lim
∆𝑥→0

𝑓 𝑥 + ∆𝑥, 𝑦 − 𝑓 𝑥, 𝑦 

∆𝑥
 

𝑓𝑦 𝑥, 𝑦 = lim
∆𝑦→0

𝑓 𝑥, 𝑦 + ∆𝑦 − 𝑓 𝑥, 𝑦 

∆𝑦
 

provided that the limits exist. 

(21) (13.3) Find and use partial derivatives of a function of three or more variables. 

Let 𝑤 = 𝑓 𝑥, 𝑦, 𝑧  be a function in three variables. Then there will be three partial 

derivatives: 
𝜕𝑤

𝜕𝑥
= 𝑓𝑥 𝑥, 𝑦, 𝑧 = lim

∆𝑥→0

𝑓 𝑥 + ∆𝑥, 𝑦, 𝑧 − 𝑓 𝑥, 𝑦, 𝑧 

∆𝑥
 

𝜕𝑤

𝜕𝑦
= 𝑓𝑦 𝑥, 𝑦, 𝑧 = lim

∆𝑦→0

𝑓 𝑥, 𝑦 + ∆𝑦, 𝑧 − 𝑓 𝑥, 𝑦, 𝑧 

∆𝑦
 

𝜕𝑤

𝜕𝑧
= 𝑓𝑧 𝑥, 𝑦, 𝑧 = lim

∆𝑧→0

𝑓 𝑥, 𝑦, 𝑧 + ∆𝑧 − 𝑓 𝑥, 𝑦, 𝑧 

∆𝑧
 

(22) (13.3) Find higher-order partial derivatives of a function of two or three variables. 

2nd-order partial derivatives: 

𝜕

𝜕𝑥
 
𝜕𝑓

𝜕𝑥
 =

𝜕2𝑓

𝜕𝑥2
= 𝑓𝑥𝑥  
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𝜕

𝜕𝑦
 
𝜕𝑓

𝜕𝑥
 =

𝜕2𝑓

𝜕𝑦𝜕𝑥
= 𝑓𝑥𝑦  

𝜕

𝜕𝑥
 
𝜕𝑓

𝜕𝑦
 =

𝜕2𝑓

𝜕𝑥𝜕𝑦
= 𝑓𝑦𝑥  

𝜕

𝜕𝑦
 
𝜕𝑓

𝜕𝑦
 =

𝜕2𝑓

𝜕𝑦2
= 𝑓𝑦𝑦   

(23) (13.4) Use the differential as an approximation. 

𝑑𝑧 =
𝜕𝑧

𝜕𝑥
𝑑𝑥 +

𝜕𝑧

𝜕𝑦
𝑑𝑦 and ∆𝑧 = 𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 − 𝑓 𝑥, 𝑦 . 

∆𝑧 ≈ 𝑑𝑧 is called a linear approximation. 

(24) (13.5) Chain rules with one variable for functions of several variables. 

Let 𝑤 = 𝑓 𝑥, 𝑦 , 𝑥 = 𝑔 𝑡 , and 𝑦 = 𝑕 𝑡  be differentiable functions. Then 

𝑤 = 𝑓 𝑔 𝑡 , 𝑕 𝑡   is a differentiable function in one variable 𝑡, and 

𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡
. 

Note: This formula can be extended to 3 or more variables. 
𝑑𝑤

𝑑𝑡
=

𝜕𝑤

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝑤

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝑤

𝜕𝑧

𝑑𝑧

𝑑𝑡
. 

(25) (13.5) Chain rules with two independent variables. 

Let 𝑤 = 𝑓 𝑥, 𝑦 , 𝑥 = 𝑔 𝑠, 𝑡 , and 𝑦 = 𝑕 𝑠, 𝑡  be differentiable functions and all of 

the partial derivatives exist. Then 𝑤 = 𝑓 𝑔 𝑠, 𝑡 , 𝑕 𝑠, 𝑡   is a differentiable 

function in two variables 𝑠, 𝑡, and 
𝜕𝑤

𝜕𝑠
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
, and 

𝜕𝑤

𝜕𝑡
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑡
 

Note: This formula can be extended to 3 or more variables. 
𝜕𝑤

𝜕𝑠
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑠
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑠
+

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑠
, and 

𝜕𝑤

𝜕𝑡
=

𝜕𝑤

𝜕𝑥

𝜕𝑥

𝜕𝑡
+

𝜕𝑤

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑤

𝜕𝑧

𝜕𝑧

𝜕𝑡
 

(26) (13.5) Find partial derivatives implicitly. 

(a) If 𝐹 𝑥, 𝑦 = 0 is an implicit function, then the derivative 
𝑑𝑦

𝑑𝑥
 can be found 

implicitly: 

𝑑𝑦

𝑑𝑥
= −

𝐹𝑥 𝑥, 𝑦 

𝐹𝑦 𝑥, 𝑦 
, where 𝐹𝑦 𝑥, 𝑦 ≠ 0 

(b) If 𝐹 𝑥, 𝑦, 𝑧 = 0 is an implicit function, then the two partial derivatives can be 

found implicitly: 

𝜕𝑧

𝜕𝑥
= −

𝐹𝑥 𝑥, 𝑦, 𝑧 

𝐹𝑧 𝑥, 𝑦, 𝑧 
 and 

𝜕𝑧

𝜕𝑦
= −

𝐹𝑦 𝑥, 𝑦, 𝑧 

𝐹𝑧 𝑥, 𝑦, 𝑧 
, where 𝐹𝑧 𝑥, 𝑦, 𝑧 ≠ 0 

(27) (13.6) Find and use directional derivatives of a function of two variables. 

Let 𝑓 be a function of two variables 𝑥, 𝑦 and let 𝑢  = cos 𝜃 𝑖 + sin 𝜃 𝑗  be a unit 

vector. Then 
𝐷𝑢   𝑓 𝑥, 𝑦 = 𝑓𝑥 𝑥, 𝑦 cos 𝜃 + 𝑓𝑦 𝑥, 𝑦 sin 𝜃 

(28) (13.6) Find the gradient of a function of two variables. 

Let 𝑧 = 𝑓 𝑥, 𝑦  be a function whose partial derivatives exist. Then the gradient of 𝑓, 

denoted by ∇𝑓 𝑥, 𝑦 , or grad 𝑓 𝑥, 𝑦 , is the vector-valued function: 

∇𝑓 𝑥, 𝑦 = 𝑓𝑥 𝑥, 𝑦  𝑖 + 𝑓𝑦 𝑥, 𝑦  𝑗  
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(29) (13.6) Find directional derivatives and gradients of functions of three variables. 

Let 𝑓 be a function of three variables 𝑥, 𝑦, 𝑧 and let 𝑢  = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘   be a unit 

vector. Then 

𝐷𝑢   𝑓 𝑥, 𝑦, 𝑧 = 𝑎𝑓𝑥 𝑥, 𝑦, 𝑧 + 𝑏𝑓𝑦 𝑥, 𝑦, 𝑧 + 𝑐𝑓𝑧 𝑥, 𝑦, 𝑧  

The gradient is: 

∇𝑓 𝑥, 𝑦, 𝑧 = 𝑓𝑥 𝑥, 𝑦, 𝑧  𝑖 + 𝑓𝑦 𝑥, 𝑦, 𝑧  𝑗 + 𝑓𝑧 𝑥, 𝑦, 𝑧  𝑘   

(30) (13.7) Find equations of tangent planes and normal lines to surfaces. 

Use ∇𝐹 𝑥0, 𝑦0, 𝑧0  as the directional vector! 

(31) (13.7) Find the angle of inclination of a plane in space. 

Let 𝑛   be a normal vector of a plane, and 𝑘  =  0, 0, 1 . Then the angle of inclination 

of a plane is given by: 

cos θ =
 𝑛  ∙ 𝑘   

 𝑛   
 

where 𝑛   can be ∇𝐹 𝑥, 𝑦, 𝑧 = 𝐹𝑥 𝑥, 𝑦, 𝑧  𝑖 + 𝐹𝑦 𝑥, 𝑦, 𝑧  𝑗 + 𝐹𝑧 𝑥, 𝑦, 𝑧  𝑘  . In 

particular, if 𝑧 = 𝑓 𝑥, 𝑦 , then 𝐹 𝑥, 𝑦, 𝑧 = 𝑓 𝑥, 𝑦 − 𝑧 = 0, and ∇𝐹 𝑥, 𝑦, 𝑧 =

𝑓𝑥 𝑥, 𝑦  𝑖 + 𝑓𝑦 𝑥, 𝑦  𝑗 − 𝑘  . 

(32) (13.8) Find relative extrema of a function of two variables. 

 𝑥0, 𝑦0  is called a critical point if ∇𝑓 𝑥0, 𝑦0 = 0   (that is, both 𝑓𝑥 𝑥0, 𝑦0 = 0 and 

𝑓𝑦 𝑥0, 𝑦0 = 0) or at least one of them does not exist. If 𝑓 has a relative extremum 

at  𝑥0, 𝑦0  on an open region 𝑅, then  𝑥0, 𝑦0  must be a critical point of 𝑓. 

(33) (13.8) Use the Second Partials Test to find relative extrema of a function of two 

variables. 

Let 𝑓 have continuous second partial derivatives on an open region containing a 

point  𝑎, 𝑏  such that ∇𝑓 𝑎, 𝑏 = 0 (critical point). Let  

𝑑 =  
𝑓𝑥𝑥  𝑎, 𝑏 𝑓𝑥𝑦  𝑎, 𝑏 

𝑓𝑦𝑥  𝑎, 𝑏 𝑓𝑦𝑦  𝑎, 𝑏 
 = 𝑓𝑥𝑥 𝑎, 𝑏 𝑓𝑦𝑦  𝑎, 𝑏 −  𝑓𝑥𝑦  𝑎, 𝑏  

2
 

(a) If 𝑑 > 0 and 𝑓𝑥𝑥  𝑎, 𝑏 > 0, then 𝑓 has relative minimum at  𝑎, 𝑏  

(b) If 𝑑 > 0 and 𝑓𝑥𝑥  𝑎, 𝑏 < 0, then 𝑓 has relative maximum at  𝑎, 𝑏  

(c) If 𝑑 < 0, then  𝑎, 𝑏, 𝑓 𝑎, 𝑏   is a saddle point. 

(d) If 𝑑 = 0, then the test fails (it is inconclusive). 

(34) (13.9) Solve optimization problems involving functions of several variables. 

Find relative extrema by taking partial derivatives. 

(35) (13.10) Understand the Method of Lagrange Multipliers. 

Lagrange’s Theorem: Let 𝑓 and 𝑔 have continuous first partial derivatives such that 

𝑓 has an extremum at a point  𝑥0, 𝑦0  on the smooth constraint curve 𝑔 𝑥, 𝑦 = 𝑐. 

If ∇𝑔 𝑥0, 𝑦0 ≠ 0  , then there is a real number 𝜆 such that  

∇𝑓 𝑥0, 𝑦0 = 𝜆∇𝑔 𝑥0, 𝑦0  
(36) (13.10) Use Lagrange multipliers to solve constrained optimization problems. 

Method of Lagrange Multipliers (one constraint): 

Let 𝑓 and 𝑔 have continuous first partial derivatives such that 𝑓 has an extremum at 

a point  𝑥0, 𝑦0  on the smooth constraint curve 𝑔 𝑥, 𝑦 = 𝑐. The following steps 

help us find the min or max value of 𝑓. 

Step 1: Solve the following system of equations: 
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𝑓𝑥 𝑥, 𝑦 = 𝜆𝑔𝑥 𝑥, 𝑦  
𝑓𝑦 𝑥, 𝑦 = 𝜆𝑔𝑦 𝑥, 𝑦  

𝑔 𝑥, 𝑦 = 𝑐 
Step 2: Evaluate at each solution. The largest is max, and the smallest is the min. 

Note: step one above can be extended to three variables case: 

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧  
𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧  

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧  
𝑔 𝑥, 𝑦, 𝑧 = 𝑐 

(37) (13.10) Use the Method of Lagrange Multipliers with two constraints. 

Method of Lagrange Multipliers (two constraints): 

With the same setting as in one variable case, except for two constraints, 𝑔  and 𝑕, 

then ∇𝑓 = 𝜆∇𝑔 + 𝜇∇𝑕 will lead to potential extrema. 

Step 1: Solve the following system of equations: 

𝑓𝑥 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑥 𝑥, 𝑦, 𝑧 + 𝜇𝑕𝑥 𝑥, 𝑦, 𝑧  
𝑓𝑦 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑦 𝑥, 𝑦, 𝑧 + 𝜇𝑕𝑦 𝑥, 𝑦, 𝑧  

𝑓𝑧 𝑥, 𝑦, 𝑧 = 𝜆𝑔𝑧 𝑥, 𝑦, 𝑧 + 𝜇𝑕𝑧 𝑥, 𝑦, 𝑧  
𝑔 𝑥, 𝑦, 𝑧 = 𝑐1 
𝑕 𝑥, 𝑦, 𝑧 = 𝑐2 

Step 2: Evaluate at each solution. The largest is max, and the smallest is the min. 

(38) (14.1) Use an iterated integral to find the area of a plane region. 

(a) Vertically simple region: 

𝐴 =   𝑔2 𝑥 − 𝑔1 𝑥  
𝑏

𝑎

𝑑𝑥 =   𝑑𝑦
𝑔2 𝑥 

𝑔1 𝑥 

𝑏

𝑎

𝑑𝑥 

(b) Horizontally simple region: 

𝐴 =   𝑕2 𝑦 − 𝑕1 𝑦  
𝑑

𝑐

𝑑𝑦 =   𝑑𝑥
𝑕2 𝑦 

𝑕1 𝑦 

𝑑

𝑐

𝑑𝑦 

(39) (14.2) Use a double integral to represent the volume of a solid region. 

If 𝑓 𝑥, 𝑦 ≥ 0 is integrable on a closed, bounded region 𝑅 in the 𝑥𝑦-plane, then the 

volume of the solid region that lies above 𝑅 and below the graph of 𝑓 is defined as 

the double integral: 

𝑉 =  𝑓 𝑥, 𝑦 𝑑𝐴

𝑅

 

(40) (14.2) Evaluate a double integral as an iterated integral. 

(a) Vertically simple region: if 𝑅 is defined by 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑔1 𝑥 ≤ 𝑦 ≤ 𝑔2 𝑥 , 

where 𝑔1, 𝑔2 are continous on  𝑎, 𝑏 , then 

 𝑓 𝑥, 𝑦 𝑑𝐴

𝑅

=   𝑓 𝑥, 𝑦 𝑑𝑦
𝑔2 𝑥 

𝑔1 𝑥 

𝑏

𝑎

𝑑𝑥 

(b) Horizontally simple region: if 𝑅 is defined by 𝑐 ≤ 𝑦 ≤ 𝑑 and 𝑕1 𝑦 ≤ 𝑥 ≤
𝑕2 𝑦 , where 𝑕1, 𝑕2 are continous on  𝑐, 𝑑 , then 
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 𝑓 𝑥, 𝑦 𝑑𝐴

𝑅

=   𝑓 𝑥, 𝑦 𝑑𝑥
𝑕2 𝑦 

𝑕1 𝑦 

𝑑

𝑐

𝑑𝑦 

(41) (14.3) Write and evaluate double integrals in polar coordinates. 

Let 𝑅 be a plane region consisting of all points  𝑥, 𝑦 =  𝑟 cos 𝜃 , 𝑟 sin 𝜃  satisfying 

the conditions 0 ≤ 𝑔1 𝜃 ≤ 𝑟 ≤ 𝑔2 𝜃 , 𝛼 ≤ 𝜃 ≤ 𝛽 (that is, 𝑟-simple), where 

0 ≤  𝛽 − 𝛼 ≤ 2𝜋. If 𝑔1 and 𝑔2 are continuous on  𝛼, 𝛽  and 𝑓 is continuous on 𝑅, 

then 

 𝑓 𝑥, 𝑦 𝑑𝐴

𝑅

=   𝑓 𝑟 cos 𝜃 , 𝑟 sin 𝜃 𝑟𝑑𝑟
𝑔2 𝜃 

𝑔1 𝜃 

𝛽

𝛼

𝑑𝜃 

(42) (14.4) Find the mass of a planar lamina using a double integral. 

If 𝜌 is a continuous density function on the lamina corresponding to a plane region 

𝑅, then the mass 𝑚 of the lamina is given by 

𝑚 =  𝜌 𝑥, 𝑦 𝑑𝐴

𝑅

 

(43) (14.4) Find the center of mass of a planar lamina using double integrals. 

Let 𝜌 be a continuous density function on the planar lamina region 𝑅. The moments 

of mass 𝑚 with respect to the 𝑥- and 𝑦-axes are 

𝑀𝑥 =  𝑦𝜌 𝑥, 𝑦 𝑑𝐴

𝑅

  and  𝑀𝑦 =  𝑥𝜌 𝑥, 𝑦 𝑑𝐴

𝑅

 

And the center of mass is 

 𝑥 , 𝑦  =  
𝑀𝑦

𝑚
,
𝑀𝑥

𝑚
  

(44) (14.4) Find moments of inertia using double integrals. 

Second moments are also called the moment of inertia of a lamina about a line: 

𝐼𝑥 =  𝑦2𝜌 𝑥, 𝑦 𝑑𝐴

𝑅

  and  𝐼𝑦 =  𝑥2𝜌 𝑥, 𝑦 𝑑𝐴

𝑅

 

(45) (14.5) Use double integral to find the area of a surface. 

If 𝑓 and its partial derivatives are continuous on the closed region 𝑅 in the  𝑥𝑦-

plane, then the area of the surface 𝑆 given by 𝑧 = 𝑓 𝑥, 𝑦  over 𝑅 is given by 

 𝑑𝑆

𝑅

=   1 +  𝑓𝑥′ 𝑥, 𝑦  2 +  𝑓𝑦′ 𝑥, 𝑦  
2
𝑑𝐴

𝑅

 

(46) (14.6) Use a triple integral to find the volume of a solid region. 

Fubini’s Theorem on triple integrals 

Let 𝑓 be continuous on a solid region 𝑄 defined by 

𝑎 ≤ 𝑥 ≤ 𝑏, 𝑕1 𝑥 ≤ 𝑦 ≤ 𝑕2 𝑥 , 𝑔1 𝑥, 𝑦 ≤ 𝑧 ≤ 𝑔2 𝑥, 𝑦  

where 𝑕1 , 𝑕2, 𝑔1, and 𝑔2 are continuous functions. Then, 

 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

=    𝑓 𝑥, 𝑦, 𝑧 𝑑𝑧 𝑑𝑦 𝑑𝑥
𝑔2 𝑥,𝑦 

𝑔1 𝑥,𝑦 

𝑕2 𝑥 

𝑕1 𝑥 

𝑏

𝑎

. 
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(47) (14.6) Find the center of mass and moments of inertia of a solid region. 

(a) If 𝜌 is a continuous density function on a solid region 𝑄, the center of mass is 

given by 

𝑥 =
𝑀𝑦𝑧

𝑚
, 𝑦 =

𝑀𝑧𝑥

𝑚
, 𝑧 =

𝑀𝑥𝑦

𝑚
 

where  

𝑚 =  𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

𝑀𝑦𝑧 =  𝑥𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

𝑀𝑧𝑥 =  𝑦𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

𝑀𝑥𝑦 =  𝑧𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

(b) Second moments are also called the moments of inertia of a solid region about 

𝑥-axis, 𝑦-axis, and 𝑧-axis, respectively: 

𝐼𝑥 =   𝑦2 + 𝑧2 𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

𝐼𝑦 =   𝑧2 + 𝑥2 𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

𝐼𝑧 =   𝑥2 + 𝑦2 𝜌 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

 

(48) (14.7) Write and evaluate a triple integral in cylindrical coordinates. 

Note: 𝑑𝑉 = 𝑟𝑑𝑧 𝑑𝑟 𝑑𝜃 for cylindrical coordinates. See Figure 14.62 (p. 1035) 

(a) If 𝑄 is a 𝑟-simple, then 

 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

=    𝑓 𝑟 cos 𝜃 , 𝑟 sin 𝜃 , 𝑧  𝑟𝑑𝑧 𝑑𝑟 𝑑𝜃
𝑕2 𝑟 cos 𝜃,𝑟 sin 𝜃 

𝑕1 𝑟 cos 𝜃,𝑟 sin 𝜃 

𝑔2 𝜃 

𝑔1 𝜃 

𝜃2

𝜃1

 

(b) If 𝑄 is a 𝜃-simple, then 

 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

=    𝑓 𝑟 cos 𝜃 , 𝑟 sin 𝜃 , 𝑧  𝑟𝑑𝑧 𝑑𝜃 𝑑𝑟
𝑕2 𝑟 cos 𝜃,𝑟 sin 𝜃 

𝑕1 𝑟 cos 𝜃,𝑟 sin 𝜃 

𝑔2 𝑟 

𝑔1 𝑟 

𝑟2

𝑟1

 

(49) (14.7) Write and evaluate a triple integral in spherical coordinates. 

If 𝑄 is a spherical block determined by  
  𝜌, 𝜃, 𝜙 : 𝜌1 ≤ 𝜌 ≤ 𝜌2 , 𝜃1 ≤ 𝜃 ≤ 𝜃2 , 𝜙1 ≤ 𝜙 ≤ 𝜙2 . Then 
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 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑉

𝑄

=    𝑓 𝜌 sin 𝜙 cos 𝜃 , 𝜌 sin 𝜙 sin 𝜃 , 𝜌 cos 𝜙  𝜌2 sin 𝜙 𝑑𝜌 𝑑𝜙 𝑑𝜃
𝜌2

𝜌1

𝜙2

𝜙1

𝜃2

𝜃1

 

(50) (15.1) Determine whether a vector field is conservative. 

Test for conservative vector field in the plane: 

Let 𝑀 and 𝑁 have continuous first partial derivatives on an open disk 𝑅. The vector 

field given by 𝐹  𝑥, 𝑦 = 𝑀𝑖 + 𝑁𝑗  is conservative if and only if  
𝜕𝑁

𝜕𝑥
=

𝜕𝑀

𝜕𝑦
. 

(51) (15.1) Find the curl of a vector field. 

(a) The curl of vector field 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 + 𝑁𝑗 + 𝑃𝑘   is 

curl         𝐹  𝑥, 𝑦, 𝑧 = ∇ × 𝐹  𝑥, 𝑦, 𝑧 = 

 
𝜕𝑃

𝜕𝑦
−

𝜕𝑁

𝜕𝑧
 𝑖 +  

𝜕𝑀

𝜕𝑧
−

𝜕𝑃

𝜕𝑥
 𝑗 +  

𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
 𝑘  . 

If curl         𝐹  𝑥, 𝑦, 𝑧 = 0  , then 𝐹  𝑥, 𝑦, 𝑧  is said to be irrotational. 

(b) Test for conservative vector field in space: 

Let 𝑀, 𝑁 and 𝑃 have continuous first partial derivatives on an open sphere 𝑄 in 

space. The vector field given by 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 + 𝑁𝑗 + 𝑃𝑘   is conservative if and 

only if curl         𝐹  𝑥, 𝑦, 𝑧 = 0  . That is, 
𝜕𝑃

𝜕𝑦
=

𝜕𝑁

𝜕𝑧
,

𝜕𝑀

𝜕𝑧
=

𝜕𝑃

𝜕𝑥
,

𝜕𝑁

𝜕𝑥
=

𝜕𝑀

𝜕𝑦
. 

(52) (15.1) Find the divergence of a vector field. 

The divergence of a vector field (in plane) 𝐹  𝑥, 𝑦 = 𝑀𝑖 + 𝑁𝑗  is: 

div 𝐹  𝑥, 𝑦 = ∇ ∙ 𝐹  𝑥, 𝑦 =
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
. 

The divergence of a vector field (in space) 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 + 𝑁𝑗 + 𝑃𝑘   is: 

div 𝐹  𝑥, 𝑦, 𝑧 = ∇ ∙ 𝐹  𝑥, 𝑦, 𝑧 =
𝜕𝑀

𝜕𝑥
+

𝜕𝑁

𝜕𝑦
+

𝜕𝑃

𝜕𝑧
. 

If div 𝐹 = 0, that is, the sum of partial derivatives equals 0, then 𝐹  is said to be 

divergence free. 

(53) (15.2) Write and evaluate a line integral. 

Let 𝑓 be continuous in a region containing a smooth curve 𝐶. If 𝐶 is given by 𝑟  𝑡 , 

where 𝑎 ≤ 𝑡 ≤ 𝑏, then 𝑑𝑠 =  𝑟 ′ 𝑡  𝑑𝑡. 

 𝑓 𝑥, 𝑦 
𝐶

𝑑𝑠 =  𝑓 𝑥 𝑡 , 𝑦 𝑡  
𝑏

𝑎

  𝑥′ 𝑡  2 +  𝑦′ 𝑡  2𝑑𝑡 

 𝑓 𝑥, 𝑦, 𝑧 
𝐶

𝑑𝑠 =  𝑓 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  
𝑏

𝑎

  𝑥′ 𝑡  2 +  𝑦′ 𝑡  2 +  𝑧′ 𝑡  2𝑑𝑡 

If 𝐶 is a piecewise smooth path composed of smooth curves 𝐶1, 𝐶2, … , 𝐶𝑛 ,  

then 
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 𝑓
𝐶

𝑑𝑠 =  𝑓
𝐶1

𝑑𝑠 +  𝑓
𝐶2

𝑑𝑠 + ⋯ +  𝑓
𝐶𝑛

𝑑𝑠 

(54) (15.2) Write and evaluate a line integral of a vector field. 

Let 𝐹  be a continuous vector field (also called force field) defined on a smooth 

curve 𝐶 given by 𝑟  𝑡 , 𝑎 ≤ 𝑡 ≤ 𝑏. The line integral of vector field 𝐹  on 𝐶 is given 

by 

 𝐹 ∙
𝐶

𝑑𝑟 =  𝐹 ∙
𝐶

𝑇  𝑑𝑠 =  𝐹  𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡  ∙
𝑏

𝑎

𝑟 ′ 𝑡  𝑑𝑡 

(55) (15.2) Write and evaluate a line integral in differential form. 

The differential form of a line integral of a vector field (in plane) 𝐹  𝑥, 𝑦 = 𝑀𝑖 +
𝑁𝑗  along a curve 𝐶 given by 𝑟  𝑡 , 𝑎 ≤ 𝑡 ≤ 𝑏 is: 

 𝐹 ∙
𝐶

𝑑𝑟 =  𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝐶

 

The differential form of a line integral of a vector field (in space) 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 +

𝑁𝑗 + 𝑃𝑘   along a curve 𝐶 given by 𝑟  𝑡 , 𝑎 ≤ 𝑡 ≤ 𝑏 is: 

 𝐹 ∙
𝐶

𝑑𝑟 =  𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝐶

+ 𝑃𝑑𝑧 

(56) (15.3) Understand and use the Fundamental Theorem of Line Integrals. 

Let 𝐶 be a piecewise smooth curve lying in an open region 𝑅 and given by 

𝑟  𝑡 = 𝑥 𝑡 𝑖 + 𝑦 𝑡 𝑗 , 𝑎 ≤ 𝑡 ≤ 𝑏. 

If 𝐹  𝑥, 𝑦 = 𝑀𝑖 + 𝑁𝑗  is conservative in 𝑅, and 𝑀 and 𝑁 are continuous in 𝑅, then 

 𝐹 ∙
𝐶

𝑑𝑟 =  ∇𝑓 ∙ 𝑑𝑟 
𝐶

= 𝑓 𝑥 𝑏 , 𝑦 𝑏  − 𝑓 𝑥 𝑎 , 𝑦 𝑎   

where 𝑓 is a potential function of 𝐹 . That is, 𝐹  𝑥, 𝑦 = ∇𝑓 𝑥, 𝑦 . 

(57) (15.3) Understand the concept of independence of path. 

Let 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 + 𝑁𝑗 + 𝑃𝑘   have continuous first partial derivatives in an open 

connected region 𝑅, and let 𝐶 be a piecewise smooth curve in 𝑅. The following 

conditions are equivalent: 

(a) 𝐹  is conservative. 

(b)  𝐹  𝑥, 𝑦, 𝑧 ∙ 𝑑𝑟 
𝐶

 is independent of path. 

(c)  𝐹  𝑥, 𝑦, 𝑧 ∙ 𝑑𝑟 
𝐶

= 0 for every closed curve 𝐶 in 𝑅. 

(58) (15.4) Use Green’s Theorem to evaluate a line integral. 

Let 𝑅 be a simply connected region with a piecewise smooth boundary 𝐶, oriented 

counterclockwise (that is, 𝐶 traversed once so that the region 𝑅 always lies to the 

left). If 𝑀 and 𝑁 have continuous partial derivatives in an open region containing 𝑅, 

then 

 𝑀𝑑𝑥 + 𝑁𝑑𝑦
𝐶

=   
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
 𝑑𝐴

𝑅

. 

(59) (15.4) Use alternative forms of Green’s Theorem. 

First alternative form: 
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 𝐹 ∙
𝐶

𝑑𝑟 =   
𝜕𝑁

𝜕𝑥
−

𝜕𝑀

𝜕𝑦
 𝑑𝐴

𝑅

=   curl         𝐹  ∙ 𝑘   𝑑𝐴

𝑅

 

Second alternative form: 

 𝐹 ∙
𝐶

𝑁    𝑑𝑠 =  div 𝐹 𝑑𝐴

𝑅

 

(60) (15.5) Find a normal vector and a tangent plane to a parametric surface. 

Let 𝑆 be a smooth parametric surface 

𝑟  𝑢, 𝑣 = 𝑥 𝑢, 𝑣 𝑖 + 𝑦 𝑢, 𝑣 𝑗 + 𝑧 𝑢, 𝑣 𝑘   

defined over an open region 𝐷 in the 𝑢𝑣-plane. Let  𝑢0, 𝑣0  be a point in 𝐷. A 

normal vector at the point 

 𝑥0, 𝑦0, 𝑧0 =  𝑥 𝑢0, 𝑣0 , 𝑦 𝑢0, 𝑣0 , 𝑧 𝑢0, 𝑣0   

is given by 

𝑁   = 𝑟 𝑢
′ 𝑢0, 𝑣0 × 𝑟 𝑣

′ 𝑢0, 𝑣0 =
 

 

𝑖 𝑗 𝑘  

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑢
𝜕𝑥

𝜕𝑣

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑣

 

 
 

(61) (15.5) Find the area of a parametric surface. 

Let 𝑆 be a smooth parametric surface 

𝑟  𝑢, 𝑣 = 𝑥 𝑢, 𝑣 𝑖 + 𝑦 𝑢, 𝑣 𝑗 + 𝑧 𝑢, 𝑣 𝑘   

defined over an open region 𝐷 in the 𝑢𝑣-plane. If each point on the surface 𝑆 

corresponds to exactly one point in the domain 𝐷, then the surface area of 𝑆 is given 

by 

Surface area =  𝑑𝑆

𝑆

=   𝑁    𝑑𝐴

𝐷

=   𝑟 𝑢
′ × 𝑟 𝑣

′ 𝑑𝐴

𝐷

 

where  

𝑟 𝑢
′ =

𝜕𝑥

𝜕𝑢
𝑖 +

𝜕𝑦

𝜕𝑢
𝑗 +

𝜕𝑧

𝜕𝑢
𝑘  , and 𝑟 𝑣

′ =
𝜕𝑥

𝜕𝑣
𝑖 +

𝜕𝑦

𝜕𝑣
𝑗 +

𝜕𝑧

𝜕𝑣
𝑘  . 

(62) (15.6) Evaluate a surface integral as a double integral. 

Let 𝑆 be a surface with equation 𝑧 = 𝑔 𝑥, 𝑦  and let 𝑅 be its projection onto the 𝑥𝑦-

plane. If 𝑔, 𝑔𝑥
′ , 𝑔𝑦

′  are continuous on 𝑅 and 𝑓 is continuous on 𝑆, then the surface 

integral of 𝑓 over 𝑆 is 

 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑆

𝑆

=  𝑓 𝑥, 𝑦, 𝑔 𝑥, 𝑦   1 +  𝑔𝑥
′  𝑥, 𝑦  2 +  𝑔𝑦

′  𝑥, 𝑦  
2
𝑑𝐴

𝑅

. 

(63) (15.6) Evaluate a surface integral for a parametric surface. 

Let 𝑆 be a smooth parametric surface given by vector-valued function 

𝑟  𝑢, 𝑣 = 𝑥 𝑢, 𝑣 𝑖 + 𝑦 𝑢, 𝑣 𝑗 + 𝑧 𝑢, 𝑣 𝑘   

defined over an open region 𝐷 in the 𝑢𝑣-plane. The surface integral of 𝑓 over 𝑆 is 
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 𝑓 𝑥, 𝑦, 𝑧 𝑑𝑆

𝑆

=  𝑓 𝑥 𝑢, 𝑣 , 𝑦 𝑢, 𝑣 , 𝑧 𝑢, 𝑣   𝑟 𝑢
′ 𝑢, 𝑣 × 𝑟 𝑣

′ 𝑢, 𝑣  𝑑𝐴

𝐷

 

(64) (15.6) Understand the concept of a flux integral. 

Definition: 

Let 𝐹  𝑥, 𝑦, 𝑧 = 𝑀𝑖 + 𝑁𝑗 + 𝑃𝑘   be a vector field, where 𝑀, 𝑁, 𝑃 have continuous 

first partial derivatives on the oriented surface 𝑆 with the unit normal vector 𝑁   1. 

The flux integral of 𝐹  across 𝑆 is given by 

 𝐹 ∙ 𝑁   1𝑑𝑆

𝑆

 

Geometrically, a flux integral is the surface integral over 𝑆 of the normal 

component of 𝐹 . 

(a) If 𝑆 is a surface with equation 𝑧 = 𝑔 𝑥, 𝑦  and 𝑅 is its projection onto the 𝑥𝑦-

plane, then 

 𝐹 ∙ 𝑁   1 𝑑𝑆

𝑆

=  𝐹 ∙   −𝑔𝑥
′  𝑥, 𝑦 𝑖 − 𝑔𝑦

′  𝑥, 𝑦 𝑗 + 𝑘     𝑑𝐴

𝑅

 

(b) If 𝑆 is an oriented surface given by vector-valued function 𝑟  𝑢, 𝑣 = 𝑥 𝑢, 𝑣 𝑖 +

𝑦 𝑢, 𝑣 𝑗 + 𝑧 𝑢, 𝑣 𝑘   defined over a region 𝐷 in the 𝑢𝑣-plane, then 

 𝐹 ∙ 𝑁   1 𝑑𝑆

𝑆

=  𝐹 ∙  𝑟𝑢
′ 𝑢, 𝑣 × 𝑟𝑣

′ 𝑢, 𝑣   𝑑𝐴

𝐷

 

(65) (15.7) Understand and use the Divergence Theorem. 

Let 𝑄 be a solid region bounded by a closed surface 𝑆 oriented by a unit normal 

vector directed outward from 𝑄. If 𝐹  is a vector field whose component functions 

have continuous partial derivatives in 𝑄, then 

 𝐹 ∙ 𝑁   1 𝑑𝑆

𝑆

=  div 𝐹 

𝑄

𝑑𝑉 

(66) (15.8) Understand and use Stokes’ Theorem. 

Let 𝑆 be an oriented surface with unit normal vector 𝑁   1, bounded by a piecewise 

smooth simple closed curve 𝐶. If 𝐹  is a vector field whose component functions 

have continuous partial derivatives on an open region containing 𝑆 and 𝐶, then 

 𝐹 ∙ 𝑑𝑟 

𝐶

=   curl         𝐹  ∙ 𝑁   1 𝑑𝑆

𝑆

 

(67) (15.8) Use curl to analyze the motion of rotating liquid. 

The formula  𝐹 ∙ 𝑑𝑟 
𝐶

=   curl         𝐹  ∙ 𝑁   1 𝑑𝑆
𝑆

 says that the collective measure of 

this rotational tendency taken over the entire surface 𝑆 (surface integral) is equal to 

the tendency of a fluid to circulate around the boundary 𝐶 (line integral). 

 


