
1

Lecture 3

Input and Output

Review from last week
Variable - place to store data in memory

identified by a name – should be meaningful
Has a type-

int
double
char
bool

Has a value – may be garbage
change value using assignment statements:

Variable = Expression

2

Constants - Use a constant instead of a number

Easier to change a single constant
declaration than to find all uses of the
constant in your program.
Easier to read and understand the
program
Remember to use const in the declaration
to prevent accidental modification of the
value

Arithmetic Operations +,-,*,/
Follow Rules of Precedence – Appendix 2

Integer division – dividing by two integers
will result in an integer even if there is a
remainder, regardless of the variable’s
type.

If one of the variables in an expression is
double, the result will be double

3

Arithmetic with + = and * behaves as expected for both integer and floating
point types.

Arithmetic for / behaves as expected for floating point numbers.

Arithmetic for / behaves in a somewhat surprising way for integer types
(short, int, long)

Division for integers is TRUNCATING - it discards the fractional part.

Division /, and modulus % are complementary operations. Mod, or modulus,
%, works ONLY for integer types.

4 14 / 3 = 3 NOT 4.66
3 14

-12
2 14 % 3 = 2

Programming Style

Grouping things that belong together
Indenting
Leaving a blank line
Comments
// comment follows until end of line
/* multi-line comments must end with another */

Header – use the template for your
“starter” program for all lab assignments

4

Program Template

Header

Include and Using directives

Variable and Constant Declarations

Output Identification

Hints

Read the Problem!

Listen in class!

What are the requirements?

Ask Questions!

5

Streams and Basic I/O

stream of characters - bytes
input streams and output streams
cin and cout are streams
cin is connected to the keyboard
cout is connected to the console window
We will later look at streams that go to a file

cout is the output stream, read See-Out.. It is attached to the
monitor screen. << is the insertion operator

cin is the input stream, read see-in, and is attached to the
keyboard. >> is the extraction operator.

cin and cout are defined in the iostream library.

cout <<“Press return after entering a number.\n”;

cout << “Enter the number of pods:\n”;

cin >> number_of_pods;

cout << “Enter the number of peas in a pod.\n”;
cin >> peas_per_pod;

The first two lines sends a request to the user.
The third gets an integer value (Number_of_pods) from the user.

Input and Output

6

COUT
Strings of text and values of variables may be

output to the screen:

cout << num_of_bars << “ candy bars\n”;
OR
cout << num_of_bars;
cout << “ candy bars\n”;
OR
cout << “num_of_bars << “ candy bars” << endl;

Well spaced output

7

Poorly spaced output:

CIN

Getting input from the keyboard:

cout << “Enter the number of bars in a
package\n”;

cin >> num_of_bars;

8

Escape Sequences
New line \n (like endl)
horizontal tab \t
alert \a
backslash \\
double quote \”

The \ (backslash) preceding a character tells the compiler that
the next character does not have the same meaning as the
character by itself.

An escape sequence is two characters with no space between
them.

\\ is a real backslash character, not the escape character, a
backslash that does not have the property of changing the
meaning of the next character.

Directives

#include <iostream>
using namespace std;

Makes the library “iostream” available.
iostream includes the definitions cin and cout.
Made part of your program in the linking
process.

9

#include <iostream>
using namespace std;

int main()
{

int number_of_bars; //variable declaration
double one_weight, total_weight;

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

total_weight = one_weight * number_of_bars;

cout << number_of_bars << " candy bars\n";
cout << one_weight << " ounces each\n";
cout << "Total weight is " << total_weight << " ounces.\n";

Display 2.1 page 38

cout << "Try another brand.\n";
cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

total_weight = one_weight * number_of_bars;

cout << number_of_bars << " candy bars\n";
cout << one_weight << " ounces each\n";
cout << "Total weight is " << total_weight << " ounces.\n";

cout << "Perhaps an apple would be healthier.\n";

return 0;

}

10

Enter the number of candy bars in a package
and the weight in ounces of one candy bar
Then press return.
11 2.1
11 candy bars
2.1 ounces each
Total weight is 23.1 ounces.
Try another brand.
Enter the number of candy bars in a package
and the weight in ounces of one candy bar
Then press return.
12 1.8
12 candy bars
1.8 ounces each
Total weight is 21.6 ounces.
Perhaps an apple would be healthier.

Take a Break!!!

11

Formatting Decimals
(page 51 & 216)

The “magic” formula:

cout.setf(ios::fixed); //fixed decimal point
cout.setf(ios::showpoint); // pad with zeros
cout.precision(2); //round to 2 decimal places

Member functions
setf() (set flags) - unsetf() (unset flags)

for floating point numbers:
ios::fixed, (always show the number as a fixed point number)
ios::scientific, (always show the number in scientific notation)
ios::showpoint, (always show the decimal point)

width(n) (set the width of the following field to n
characters)

More flags for any type of value:
ios::left, ios::right, (left or right justify the value in the specified
field)

precision(), (set the number of places to show for a
floating point number)

12

Formatting Flags

Flag Purpose
ios::fixed Display floating point numbers in fixed format

ios::scientific Display floating point numbers in scientific format

ios::showpoint Always show the decimal point of a floating point number

ios::left Display the data left justified in the field

ios::right Display the data right justified in the field

Manipulators

setiosflags() same as setf()

resetiosflags() same as unsetf()

setw() same as width()

setprecision() same as precision()

13

Formatting Commands

Purpose Function Manipulator
Set flag setf() setiosflags()

Unset flag unsetf() resetiosflags()

Set field width width() setw()

Set number of digits precision() setprecision()

Reading
Section 2.4 pages 65-74

Sections 7.1 and 7.2 pages 335 – 364

