7~ What we willdearn about this week: —

Declaring and referencing arrays
Arrays in memory

Initializing arrays

indexed variables

arrays as function arguments

>
» o

7 SIgVSeEm——e =
a way of expressing many of the same variable
type:

Int numl1, num2, num3, hum4, num>5;

int num[5];

declares these five variables:
num[0], num[1], num[2], num[3], num[4]

Review of BlackJack Lab

we needed to keep track of up to 5
cards: cardl, card2, card3, card4, card5

we could have used an array:
char cards[5];

Declaring an array
Int score[5];

This makes five integer variables called
score[0], score[1], score[2], score[3], score[4]

These are indexed variables, subscripted
variables, or elements

score is the name of the array
5 is the declared size of the array
int is the base type

Array Declaration
Syntax:
Type_Name Array_Name| Declared_Size] ;

Examples:

int big_array[100];

double a[3];

double b[5];

char grade[10], one_grade;

An array declaration, of the form shown above, will define Declared_Size
index variables, namely the indexed variables Array_Name[@] through
Array_Name[Declared_Size-1]. Each index variable is a variable of type
Type_Name.

The array a consists of the indexed variables a[@], a[l], and a[2], all of
type double. The array b consists of the indexed variables b[@], b[1], b[2],
b[3], and b[4], also all of type double. You can combine array declarations
with the declaration of simple variables such as the variable one_grade shown
above.

Common Error
First element starts at zero.

The last element is one less than the
declared size.

This is a constant source of errors!

=

7~ Using indexed variables - -

Array references may be used anywhere an
ordinary variable is used.

cin >> score[4] >> score[2];

cout << score[2] << “ “ << score[4];
score[0] = 32;

score[3] = next;

score[next] =3;

The index can be a constant or an integer
variable

> Display.10.1 page 495 _

/IReads in 5 scores and shows how much each score differs from the highest.
#include <iostream>
int main()
{
using namespace std;
int i, score[5], max;
cout << "Enter 5 scores:\n";
cin >> score[0];
max = score[0];
for (i = 1;i <5; i++)
{
cin >> scorel[il;
if (score[i] > max)
max = score[i];
/Imax is the largest of the values score[0],..., score[i].

}

— /
N
- v
cout << "The highest score is " << max << end|
<<"The scores and their\n"
<< "differences from the highest are:\n";

for (i =0;i <5; i++)
cout << score[i] <<" off by "
<< (max - score[i]) << endl;

return O;

Arraysin memory — - -

A computer’s memory is like a long list of numbered locations
called bytes.

The numbers are called addresses, and the information written
there is either some program’s instructions or data.

Every variable, whether the type is built-in or constructed by
the programmer has a location where the variable starts and a
number of bytes necessary to hold the variable that is
determined by the type of the variable.
Hence, every variable has an address and a type.
An array variable is represented in this way, but here there is
more. Consider:

int a[6];
Here the compiler decides where in memory to put the array,
and the size of the array is 6 * the size of an /nt.

The size of an array is the Declared_Size * sizeof(Array_Type)

int al[6];

addreis ﬁ%a* \/W\/

1022
1023
Or i compuiter eactr 1024 > alo]
indered variable wics 1025 > ari
2 éqxied, da a[3] égg%'ﬁ/,f }8;3
K3 = 6 byled afler 1028 > a[2]
the alanl of ale@]. 1029 >
1030 af3]
1031
1032 > al4]
There id v indexed, 1033 > a[5]
u@’Mij B ek f%‘\—_;1034 some variable
there wene one, i < > named stuff

weanld be fiene. < >.\'nmc variable
/ named more_stuff
There i4 no indered

uanichle a FZ1. bousd ;,‘p/

therne wene oue, it

waitld be lere.

Paoe 499

'

eThe most common programming error when using arrays is the attempt to
reference a non-existent array index.

eThe array definition:

Ze Array Index-Out of Range - —

int a[6]; /ldeclares ONLY the indexed variables a[0] through a[5].
eAn index value outside 0 to 5 is an out of range error, i.e., illegal.
eConsider: a[7] = 248;

oC++ treats 7 as if it were legal subscript, and attempts to write to memory where
a[7] would be.

elnspection of Display 9.3 suggests a[71] would be written two chunks of memory
the size of an int beyond the real end of the array.

eUnfortunately, compilers do not detect this error. Your program may seem to
work correctly. The effects range from no detectable effects, to abnormal end of
program, to operating system crashing, to the next application crashing
obscurely when it is started.

oC++ arrays were designed to be a low level construct that is not normally array
bounds checked.

~ ——
4 nivaliziag Alrays.- 0 ow———

~ A variable of simple type can hold only one value in
the variable

- A simple variable can be initialized in one statement:
int sum = 0O;

- An array also can be initialized in one statement:

int children[3] = { 2, 12, 1};

- The compiler will count for you:

intb[]={5, 12, 11};

- This is equivalent to

intb[3] = {5, 12, 11};

- If there is no initializer, no initialization is done.

13

>

- =
-~ Use defined constant.for tbe_ge of an'Array. —

- Array indices always start at 0 and end with a value one
less than the size of the array.

~ Consider changing a program where the size of an array
(say 50) appears several dozen times over thousands of
lines.

~ You might be looking for 49, 50 or perhaps 51. You must
understand every instance where a number in this range
was used. You might have to find where 25 (=50/2) was
used. You can’t be certain you have completed the job.

" In order to write code that is easily and correctly modifiable,
you should use a defined constant for the array size.

- Define a constant SIZE, and use that. Then you have only
one point where you need to change the size:

" const int SIZE = 50;

Arrays:in_functions

eAn indexed variable is just a variable whose type is the base type of
the array, and may be used anywhere any other variable whose type is
the base type of the array might be used.

inti, n, a[10];
my_function(n);

my_function(a[3]);

eDisplay 10.3 illustrates this notion.

Display 10.3page 503
lllustrates the use of'an indexed variable as an argument.

//IAdds 5 to each employee’s allowed number of vacation days.
#include <iostream>
const int NUMBER_OF_EMPLOYEES = 3;
int adjust_days(int old_days); //Returns old_days plus 5.
int main()
{
using namespace std;
int vacation[NUMBER_OF_EMPLOYEES], number;
cout << "Enter allowed vacation days for employees 1"
<< " through " << NUMBER_OF_EMPLOYEES << ":\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cin >> vacation[number-1];
for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";

for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
vacation[number] = adjust_days(vacation[number]);
cout << "The revised number of vacation days are:\n";
for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
cout << "Employee number " << number
<< "vacation days = " << vacation[number-1] << endl;
return O;

}
int adjust_days(int old_days)

return (old_days + 5);

7 Array§ as-function gtﬁuTnEHts —

It is possible to use an entire array as a formal parameter for a
function.

Remember a formal parameter is a kind of place holder that is
filled in by the argument at the time the function is called.
Arguments are placed in parentheses after the function name to
signal that the function is being called and that this is the list of
arguments to be “plugged in” for the parameter.

A function can have a formal parameter for an entire array that is
neither a call-by-value nor a call-by-reference parameter.

This is a new parameter type called an array parameter.

This is not call-by-value because we can change the array when
passed this way.

This is not call-by-reference because we cannot change the
complete array by a single assignment when passed this way.

While this is not call-by-reference, the behavior is like call-by-
reference since we.can change individual array elements by
assignining them in the called function.

» - S

o~ R, -
04 - o - o

eWhen an array is used as an argument is a function call, any action that
is performed on the array parameter is performed on the array argument,
so the values of the indexed variables of the array argument can be
chanted by the function.

eAn array is stored in a contiguous chunk of memory.

oOn declaration, C++ reserves enough memory to hold the indexed
variables that make up the array.

oC++ does not remember the addresses of the indexed variables, but it
knows how to find them given the array address and the index.

olf score[3] is needed, C++ knows that score[3] is 3 int variables past
score[0]. To get score[3], C++ adds 3 * bytes_in_an_int.

eViewed this way, an array is three things:
1) an address of the start of the array in memory
2) atype, which tells how big each indexed variable is
3) the array size, which tells number of indexed variables.

eThe array argument tells the caller only the address and type, but not the

size of the array.

-
» -

o
~ Display 10.4 Function with grLArray ParametQry =/

void fill_up(int a[|, int size);
/[Precondition: size is the declared size of the array a.The user will type in size integers.
/IPostcondition: The array a is filled with size integers from the keyboard.

void fill_up(int a[], int size)
{

using namespace std;

cout << "Enter " << size << " numbers:\n";

for (inti=0; i < size; i++)

cin >> afi];
size--;
cout << "The last array index used is " << size << end|;

10

Using the const'paramet‘er modifier - .

eArray parameters allow the function to change any value stored in the array.
eFrequently, this, as in Display 10.4, is the intent of the function.

eSometimes this is definitely not the case. Sometimes we want to avoid changing
an array parameter.

eExample: const prevents inadvertent changing of array a

void show_the_world(const int a[], int size_of_a)

{
cout << "Array values are:\n";
for=(.int=ir-= 05 i< isizel ofa;-Si++)
couti<<—aiitlascc=nans.
cout << endl;
}

Array Formal Parameters and Arguments

An argument to a function may be an enfire array, but an argument for an entire
array is neither a call-by-value argument nor a callby-reference argument. It is a new
kind of argument known as an array argument. VWhen an array argument is plugged in
for an array parameter, all that is given to the function is the address in memory of the
first indexed variable of the array argument (the one indexed by @). The array
argument does not fell the function the size of the array. Therefore, when you have an
array parameter to a function, you normally must also have another formal parameter
of fype int that gives the size of the array (as in the example below).

An array argument is like a call-by-reference argument in the following way: if
the function body changes the array parameter, then when the function is called,
that change is actually made fo the array argument. Thus, a function can change
the valves of an array argument (that is, can change the values of its indexed
variables).

The syntax for a function prototype with an array parameter is:

Syntax:
Type_Returned Function_Name(..., Base_Type Array_Name|l,...);
Example:

void sum_array(double& sum, double all, int size);

11

f

“Take a break!” =—

=

/—____

by ;
s -y, ™

Reading Assignment

Strings:
10.5 (pg 545- 553)
11.1 (pg 569 - 586)

12

