
1

What we will learn about this
week:

Streams
Basic file I/O
Tools for Stream I/O
Manipulators
Character I/O
Get and Put
EOF function
Pre-defined character
functions
Objects

2

I/O Streams as an Introduction to
Objects and Classes

Input refers to data flowing INTO your program.
Output refers to data flowing OUT OF your program.
Input can be taken from the keyboard or a file.
Output can be sent to the screen or to a file
Input is transferred to a C++ program from either a file or the
keyboard by means of an input stream.
Output is transferred from a C++ program to the screen or to
a file by means of a output stream.
Streams are objects defined in the Standard Library’s header
files <iostream> and <fstream>.

3

I/O to/from Files

We will learn to take input from a file and
send output to a file.
Files allow you to store the data
permanently.
Files can be used over and over by many
programs.
Files allow for large amounts of data.

4

File I/O

When a program takes data from a file, we say the program is
reading from the file.
When a program sends output to a file, we say the program is
writing to the file.
A stream is a flow of characters or other data. In C++ a
stream is a special kind of variable known as an object.
cin and cout are objects predefined in the iostream library.
File streams, like other variables, must be declared by the
programmer as needed.

4

5

Defining Streams

Defined in fstream library
type ifstream – input file stream
type ofstream – output file stream

examples:
ifstream in_stream; // defines input stream
ofstream out_stream; // defines output stream

6

Connecting Streams to Files

In the example:
in_stream.open (“infile.dat”); // infile.dat must exist on your system
out_stream.open (“outfile.dat”); // outfile.dat will be created.

This calls the function “open”.

The file stream in_stream is said to be open for reading, and the file stream
out_stream is said to be open for writing.

This is new! You didn’t have to do this for cin and cout.

6

7

File I/O

Once we have declared the file variables, in_stream and out_stream, and connected
them to files on our system, we can then take input from in_stream and send
output to out_stream in exactly the same manner as we have for cin and cout.

Examples:
#include <fstream>
. . .
// appropriate declarations and open statements
int one_number, another_number;
in_stream >> one_number >> another_number;
. . .
out_stream << “one_number: “ << one_number

<< “another_number: << another_number;
7

8

File I/O

Every file should be closed when your program is through fetching input or
sending output to the file.
This is done with the close() function.

Example:
in_stream.close():
out_stream.close();

Note that the close function takes no arguments.
If your program terminates normally, the system will close the arguments.
If the program does not terminate normally, this might not happen.
File corruption is a real possibility.
If you want to save output in a file and read it later, the you must close the file
before opening it the second time for reading.

8

9

Display 5.1 page 205
//Reads three numbers from the file infile.dat, sums the numbers,
//and writes the sum to the file outfile.dat.
//(A better version of this program will be given in Display 5.2.)
#include <fstream>

int main()
{

using namespace std;
ifstream in_stream;
ofstream out_stream;

in_stream.open("infile.dat");
out_stream.open("outfile.dat");

int first, second, third;
in_stream >> first >> second >> third;
out_stream << "The sum of the first 3\n"

<< "numbers in infile.dat\n"
<< "is " << (first + second + third)
<< endl;

in_stream.close();
out_stream.close();

return 0;
}

infile.dat

1

2

3

4

outfile.dat

The sum of the first 3
numbers in infile.dat
is 6

10

Introduction to Classes and Objects

Consider the code fragment:

#include <fstream>
. . .
ifstream in_stream;
ostream out_stream;
in_stream.open (“infile.dat”);
out_stream.open (“outfile.dat”);

. . .
in_stream.close():
out_stream. close();
Here the streams in_stream and out_stream are objects.
An object is a variable that has functions as well as data associated with it.
The functions open and close are associated with in_stream and out_stream, as
well as the stream data and file data.

10

11

Member Functions

Consider the code fragment:
#include <fstream>
. . .
ifstream in_stream;
ostream out_stream;
in_stream.open (“infile.dat”);
out_stream.open (“outfile.dat”);

. . .
in_stream.close();
out_stream. close();
The functions and data associated with an object are refered to as members of
the object.
Functions associated with the object are called member functions.
Data associated with the object are called data members. 11

12

Summary of Classes and Objects

An object is a variable that has functions associated with it.
Functions associated with an object are called member functions.
A class is a type whose variables are objects.
The object’s class determines which member functions the object
has.
Specify the function by writing
the object name, dot operator(.), the function name.

Syntax for calling a member function:

Calling_Object.member_function(Argument_List);
12

13

Programming Tip
Checking that a file was opened successfully

A very common error is attempting to open a file for reading where the file does
not exist. The member function open fails then. (Except in Microsoft where it
may create a file.)
Your program must test for this failure, and in the event of failure, manage the
error.
Use the istream member function fail to test for open failure: in_stream.fail();

This function returns a bool value that is true if the stream is in a fail state, and
false otherwise.

Example:
#include <cstdlib> // for the predefined exit(1); library function
. . .
in_stream.open(“infile.dat”);
if(in_stream.fail())
{

cout << “Input file opening failed. \n”;
exit(1); // Predefined function quits the program.

} 13

14

The exit Statement

The exit statement is written
#include <cstdlib> // exit is defined here
using namespace std; // to gain access to the names
exit(integer_value); // to exit the program

When the exit statement is executed, the program ends immediately.
By convention, 1 is used as an argument to exit to signal an error.
By convention, 0 is used to signal a normal successful completion of the
program. (Use of other values is implementation defined.)
The exit is defined in the cstdlib library header file, so any use requires

#include <cstdlib>
a directive to gain access to the names

Display 5.2 File I/O with Checks on open (1 of 2) - Page 210
//Reads three numbers from the file infile.dat, sums the numbers,
//and writes the sum to the file outfile.dat.
#include <fstream>
#include <iostream>
#include <cstdlib>

int main()
{

using namespace std;
ifstream in_stream;
ofstream out_stream;
in_stream.open("infile.dat");
if (in_stream.fail())
{

cout << "Input file opening failed.\n";
exit(1);

}
out_stream.open("outfile.dat");
if (out_stream.fail())
{

cout << "Output file opening failed.\n";
exit(1);

}
15

Display 5.2 File I/O with Checks on open (2 of 2)

int first, second, third;
in_stream >> first >> second >> third;
out_stream << "The sum of the first 3\n"

<< "numbers in infile.dat\n"
<< "is " << (first + second + third)
<< endl;

in_stream.close();
out_stream.close();

return 0;
}

16

17

Summary of File I/O Statements

Input in this code comes from a file with the directory name infile.dat
and output goes to a file outfile.dat

Put the following include directive in your program file:
#include <fstream> // for file i/o
#include <iostream> // for screen/keyboard i/o
#include <cstdlib> // for exit

Choose a stream name for the input the stream, such as in_stream.
Declare it to be a variable of type ifstream:
using namespace std;
ifstream in_stream;
ofstream out_stream; 17

18

Summary of File I/O Statements

Connect each stream to a file using the open member function with external file name
as argument. Always use the member function fail to test if the call succeeded.

in_stream.open(“infile.dat”);
if (in_streamin.fail());
{
cout<< “Input file opening failed.\n”;
exit(1);

}
out_stream.open(“outfile.dat”);
if(out_stream.fail())
{
cout << “Output file opening failed\n”;
exit(1);

} 18

19

Summary of File I/O Statements

Use the stream in_stream to get input from the file infile.dat just like
you use cin input from the keyboard.
Example:

in_stream >> some_variable >> another_variable;
Use the stream out_stream to send output to the file outfile.dat just
like you use cout output to the screen.
Example:

out_stream << “some_variable = “ << some_variable << endl;
Close the streams using the member function close:

in_stream.close();
out_stream.close():

19

20

Take a Break

21

Object notation for streams

(our “magic” formula for decimal point output)

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

22

member functions for output
streams

precision – number of significant digits (or
decimal places, depending on compiler)

width – how many (minimum) spaces in
output (line up output)

unsetf – unset flags that are set with setf
(see next slide)

23

set flags (Display 5.5 page 220)

ios::fixed – decimal point rather than exponential
notation
ios::scientific – floating point numbers written in
e-notation (opposite of fixed)
ios::showpoint – always include the decimal point
even if there are no significant digits after the
decimal point (2.0 rather than 2)
ios::showpos – write plus sign in front of positive
numbers
ios::right – right justify value
ios::left – left justify value (opposite of ios::right)

24

Manipulators – functions called
in a non-traditional way

setw – same as width

setprecision – same as precision

25

Examples of manipulators

out_stream << “Start” << setw(4) << 10
<< setw(4) << 20 << setw(10) << 30;

outputs:
Start 10 20 30

26

Streams can be arguments to
functions

But must be call-by-reference

void make_neat (ifstream& messy, ofstream& neat)

27

End-of-file
read returns true if a value is read
read returns false if no value is read (eof)

while (messy_file >> next) //check for eof
{

cout << setw(field_width) << next << endl;
neat_file << setw(field_width) << next << endl;

}

//(messy_file >> next) both action and Boolean
expression

28

get and put – input and output
characters

works sort of like insertion and extraction operators for
type char without automatic skipping of blanks or
understanding of escape sequences.

takes everything in as a character.

can detect end of line by checking value of character

29

Syntax for get and put

input_stream.get(char_variable);

output_stream.put(char_variable);

30

Example of get

char var; // character variable
do
{
cin.get(var); // get a character
cout << var; // output the character
}
while (var != ‘\n’) // check for end of line

31

EOF member function
returns true if end of file

instream.get(next);
while (! instream.eof()) // check for eof
{

cout << next;
instream.get(next);

}

32

Predefined Character functions

Pre-defined character functions:
toupper – converts to upper case
tolower – converts to lower case
isupper – returns true if character is uppercase
islower – returns true if character is lower case
isalpha – returns true if character is a letter (a – z or A – Z)
isdigit – returns true if character is a number (0 – 9)
isspace – returns true id character is a blank or newline

33

If you want to use the input file twice , you must first close it
then open it a second time.
If you don’t re-open it, the second time you try to use it, it will
be at the end of the file.
However, in Microsoft, you won’t be able to re-open the same
stream. So use two stream variables in_stream and in_stream2
(or fin and fin2 or whatever).
Don’t forget to close the first stream before opening the
second!!!

Quirks in Microsoft

34

Namespace

*Book’s note on ‘using’ directives – just put it
after the includes, but realize that when you
want to use something other than
namespace, you will have to make the using
statements local to the functions.

35

Programming with I/O streams
declare a stream:

ifstream numbers_in;
connect a stream to a file:

numbers_in.open(A://data1.txt);
verify that the file opened correctly:

if numbers_in.fail();
{

cout << “Error message/n”;
exit (1);

}
close the stream:

numbers_in.close();

36

Reading Assignment

Arrays

Sections 10.1 - 10.2
pages 493 – 524

37

Take a Break!

