
1

What we will learn about this
week:

Procedural Abstraction (Information Hiding)

Void functions

Call-by-reference parameters

Review

Top-Down Design

Pre-defined functions

Programmer definer functions
function prototype
function call
function header
function definition

Type casting

2

Buying Pizza
Problem Definition: Buying the large “economy” size does not always save

money. The program will compare the sizes of two pizzas to
determine which is the better buy.

Input: diameter and price of two pizzas

Output: cost per square inch for each pizza , which is the better buy.

Analysis:
1. Get input for both pizzas
2. Compute price per square inch for large pizza
3. Compute price per square inch for small pizza
4. Determine which is the better buy
5. Display the results

Display 3.9 Page 139

3

4

Information Hiding
(Black Box Analogy)

A function’s author (programmer) should know
everything about how the function does its job,
but nothing but specifications about how the
function will be used.

The client programmer -- the programmer who
will call the function in her code -- should know
only the function specifications, but nothing
about how the function is implemented.

5

Display 3.7 Page 118

Students

6

Local Variables
Variables that are defined within the
function are local variables.
Local variables belong only to the
function and cannot be used outside of
the function.
Even if a variable within the main
program has the same name, they are
different variables.

Scope
Variables local to a function are said to

have that function as their scope.

Variables that are defined within the main
program are local to the main program
and have the main program as their
scope.

7

Global Constants and Parameters

If a constant will be used by more than
one function, its declaration can be
placed outside the body of the main
program at the beginning of your
program making the constant global.

A global constant can be used in any
function that follows (including main).

Example of Global Constants
//directives
#include <iostream>
#include <cmath>
using namespace std;

//global constants
const double PI = 3.14;

//function prototypes

int main()
{

//body of main
}

8

Global variables
It is possible to declare global variables in
the same way as global constants (without
the const, of course)

But unlike constants that can’t be changed,
there can be confusion caused by using
global variables. For example, a function
uses the same variable name as one of the
global variables.

Call-by-Value parameters
The formal parameters for the function, which are
local to the function, are initialized to the value of the
arguments passed in the function call.

Even if they have the same name, the variables local
to main are not changed by the function, even if it
has the same name as the parameter.

Remember that you do not have to declare a passed
parameter in the function.

Order of arguments is the order they’re plugged into
parameters, regardless of what they’re called.

9

Take a break!!!

Void Functions
does not return a value

There is no “return expression; “ statement
(Though a return; with no expression is allowed.)

keyword void where type returned would be
void type replaces the more familiar return type
such as int or double.

A call to a void function is an executable
statement, rather than being part of an
expression.

10

Syntax for a Void function
// function prototype
void function_name (parameter list);

// function definition
void function_name (parameter list) // header
{
//function body
}

Examples

Example without a return statement :
Display 4.2 page 160

Example with a return statement:
Display 4.3 page 162

11

Display 4.2 void-Function - (1 of 4)

//Program to convert a Fahrenheit temperature to a Celsius temperature.
#include <iostream>

void initialize_screen();

//Separates current output from the output

//of the previously run program.

double celsius(double fahrenheit);

//Converts a Fahrenheit temperature to a Celsius temperature.

void show_results(double f_degrees, double c_degrees);

//Displays output. Assumes that c_degrees

//Celsius is equivalent to f_degrees Fahrenheit.

Display 4.2 void-Function - (2 of 4)
int main()
{

using namespace std;

double f_temperature, c_temperature;

initialize_screen();
cout << "I will convert a Fahrenheit temperature"

<< " to Celsius.\n"
<< "Enter a temperature in Fahrenheit: ";

cin >> f_temperature;

c_temperature = celsius(f_temperature);

show_results(f_temperature, c_temperature);
return 0;

}

12

Display 4.2 void-Function - (3 of 4)

//Definition uses iostream:
void initialize_screen()

{
using namespace std;
cout << endl;
return; //The return is optional.

}

double celsius(double fahrenheit)
{

return ((5.0/9.0)*(fahrenheit - 32));
}

Display 4.2 void-Function - (4 of 4)

//Definition uses iostream:
void show_results(double f_degrees, double c_degrees)
{

using namespace std;
cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(1);
cout << f_degrees

<< " degrees Fahrenheit is equivalent to\n"
<< c_degrees << " degrees Celsius.\n";

return; // The return is optional.
}

13

Return Statements in void functions

In C++ both void functions and value-returning
functions can have return statements.

In value-returning functions the return must have an
argument. In void-functions, the return must NOT
have an argument.

There is an implicit (compiler generated) return
statement at the final closing brace of a void
function. This does not mean you never need a
return; in a void-function.

Display 4.3 page 162 – Use of return in a void function

// function prototype
void ice_cream_division (int number, double total_weight);

// function definition
void ice_cream_division (int number, double total_weight)
{

using namespace std;
double portion;

if (number == 0)
return; // return if none

portion = total_weight / error;
cout << Each one receives “ << portion

<< “ ounces of icecream.” << endl;
}

14

Why do we need call-by-reference
parameters?

Input subtasks should be carried out with a function call.
This is not adequate for more than one return value. We
need another mechanism.

With a Call-by-Value parameter, the corresponding
argument is only read for its value. The argument can be
variable, but this is not necessary. The parameter is
initialized with the value of the value-parameter and the
value of the variable itself does not change.

With Call-by-Reference, the corresponding argument must
be variable, and the behavior of the function is as if the
variable were substituted for the parameter.

Call-by-reference parameters
It is the address (memory location) of the variable

that is passed to the function, not the value, so it
acts as if the actual variable is substituted for the
parameter.

The value of the variable is changed by the
function.

The ampersand & is added to the type name to
indicate call-by-reference.

Call by reference can be used to return multiple
values

15

Display 4.4 Call by Reference parameters (1 of 4)

//Program to demonstrate call-by-reference parameters.

#include <iostream>

void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.

Display 4.4 Call by Reference parameters (2 of 4)

int main()
{

int first_num, second_num;

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);
return 0;

}

16

Display 4.4 Call by Reference parameters (3 of 4)

//Uses iostream:
void get_numbers(int& input1, int& input2)
{

using namespace std;
cout << "Enter two integers: ";
cin >> input1

>> input2;
}

void swap_values(int& variable1, int& variable2)
{

int temp;

temp = variable1;
variable1 = variable2;
variable2 = temp;

}

Display 4.4 Call by Reference parameters (4 of 4)

//Uses iostream:
void show_results(int output1, int output2)
{

using namespace std;
cout << "In reverse order the numbers are: "

<< output1 << " " << output2 << endl;
}

17

Mixed parameter lists
It is entirely feasible to have call-by-value parameters

mixed in with call-by- reference parameters.

Example:
void good_stuff (int& par1, int par2, double& par3);

good_stuff (arg1, 17, arg3); //function call

The constant 17 is permissible because par2 is a value parameter.

The code in the body of the function has the ability to change arg1
and arg3.

Pitfall
Omitting an ampersand (&) when you intend a

reference parameter is a mistake that bites twice:

First it makes your code run incorrectly, the compiler
probably won’t catch it.
And it is very difficult to find because it looks right.

Example: Display 4.7, page 175

18

Display 4.7 Inadvertent local variables (1 of 3)

// Inadvertent local variables. Shows what happens when you omit & when
you want call-by-reference parameters.

#include <iostream>

void get_numbers(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int variable1, int variable2); Forgot the &
//Interchanges the values of variable1 and variable2.

void show_results(int output1, int output2);
//Shows the values of variable1 and variable2, in that order.

Display 4.7 Inadvertent local variables (2 of 3)

int main()

{
using namespace std;
int first_num, second_num;

get_numbers(first_num, second_num);

swap_values(first_num, second_num);

show_results(first_num, second_num);

return 0;
}

19

Display 4.7 Inadvertent local variables (1 of 3)
void swap_values(int variable1, int variable2)
{

int temp;

temp = variable1; Forgot the & here, which
variable1 = variable2; Makes these inadvertent local variables
variable2 = temp;

}

//Uses iostream:
void get_numbers(int& input1, int& input2)
{

using namespace std;
cout << "Enter two integers: ";
cin >> input1

>> input2;
}

//Uses iostream:
void show_results(int output1, int output2)
{

using namespace std;
cout << "In reverse order the numbers are: "

<< output1 << " " << output2 << endl;
}

Procedural Abstraction

A function may call another function.

Function definition cannot be placed within a
function definition, must be placed after main
or in another file.

The situation is exactly the same as if the first
call had been in the main function.

Example: Display 4.8 page 178

20

Display 4.8 Function Calling Another Function (1 of 4)
//Program to demonstrate a function calling another function.
#include <iostream>

void get_input(int& input1, int& input2);
//Reads two integers from the keyboard.

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

void order(int& n1, int& n2);
//Orders the numbers in the variables n1 and n2
//so that after the function call n1 <= n2.

void give_results(int output1, int output2);
//Outputs the values in output1 and output2.
//Assumes that output1 <= output2

Display 4.8 Function Calling Another Function (1 of 4)

int main()
{

int first_num, second_num;

get_input(first_num, second_num);
order(first_num, second_num);
give_results(first_num, second_num);
return 0;

}

21

//Uses iostream:

void get_input(int& input1, int& input2)

{
using namespace std;

cout << "Enter two integers: ";

cin >> input1 >> input2;
}

void swap_values(int& variable1, int& variable2)

{
int temp;

temp = variable1;
variable1 = variable2;

variable2 = temp;

}

void order(int& n1, int& n2)
{

if (n1 > n2)

swap_values(n1, n2);

}

//Uses iostream:

void give_results(int output1, int output2)

{

using namespace std;

cout << "In increasing order the numbers are: "

<< output1 << " " << output2 << endl;
}

22

Designing, testing and debugging
functions

Programmers typically write functions, not programs

Every function should be designed, coded and tested as a separate unit
from the rest of the program.

To test a function you need a driver program.

Every function should be tested in a program in which every other
function in that program has already been completely tested and
debugged.

If your function uses another function you may need to write a stub.

This is a catch 22. You need a framework to develop and test, but the
framework must be debugged as well.

Examples of drivers and stubs
Display 4.10 Driver Program - page 188

Display 4.11 Program that uses a Stub – page 189

23

Summary
All subtasks in a program can be implemented as functions, either as
void-functions or value-returning functions.

A formal parameter is a kind of place holder that is filled with a
function argument when the function is called.

In call-by-value, the value of the argument is copied into the parameter.
An argument corresponding to a call-by-value parameter will not be
changed by the call.

In call-by-reference the argument must be a variable, and the effect is as
if the variable had been substituted for the parameter. An argument
corresponding to a call-by-reference parameter may be changed by the
call, but this is not necessary. The syntax to make a parameter call-by-
reference is to insert an ampersand (&) between the type and the
parameter in the function prototype and function header.

Function prototype comments should be divided into Pre-conditions and Post-
conditions. The pre-condition describes the requirements that must be in effect
when the function is called, and the post-conditions describe the effect of the call,
including any returned value and/or changed arguments.

Every function should be tested in a completely tested and debugged program.
A driver program is a short program that does nothing but test a function.

A stub is a simplified function used in place of a function definition that has
not yet been tested (perhaps not written) so that the rest of the program can be
tested.

24

Take Another Break

You probably
need it by now!

25

26

