What we will learn about this

i week:

= Procedural Abstraction (Information Hiding)

= Void functions

= Call-by-reference parameters

= Top-Down Design

Pre-defined functions

Programmer definer functions

= function prototype
= function call

= function header

= function definition

Type casting

i Buying Pizza

Problem Definition: Buying the large “economy” size does not always save

money. The program will compare the sizes of two pizzas to
determine which is the better buy.

Input: diameter and price of two pizzas

Output: cost per square inch for each pizza , which is the better buy.

Analysis:

Get input for both pizzas

Compute price per square inch for large pizza
Compute price per square inch for small pizza
Determine which is the better buy

Display the results

Display 3.9 Buying Pizza (part 1 of 2)

//Determines which of two pizza sizes is the best buy.
#include <iostream>
using namespace std;

double unitprice(int diameter, double price);

//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in inches.
//The formal parameter named price is the price of the pizza.

[

int main()

{

int diameter_small, diameter_large;
double price_small, unitprice_small,
price_large, unitprice_large;

cout << "Welcome to the Pizza Consumers Union.\n";

cout << "Enter diameter of a small pizza (in inches): "
cin >> diameter_small;

cout << "Enter the price of a small pizza: $";

¢in >> price_small;

cout << "Enter diameter of a large pizza (in inches): ";
cin >> diameter_large;

cout << "Enter the price of a large pizza: $";

cin >> ‘price_large;

unitprice_small = unitprice(diameter_small, price_small);
unitprice_large = unitprice(diameter_large, price_large);

cout.setf(ios::Tixed);
cout.setf(ios::showpoint);
cout.precision{2);
cout << "Small pizza:\n"
<< "Diameter = " << diameter_small <<
<< "Price = $" << price_small
<< " Per square inch = $" << unitprice_small << end]
<< "Large pizza:\n" ’ :
<< "Diameter = " << diameter_large <<
<< "Price = $" << price_large
<< " Per square inch = $" << unitprice_large << endl;

inches\n"

inches\n"

Display 3.9 Buying Pizza (part 2 of 2)

if (unitprice_large < unitprice_small)
cout << "The large one is the better buy.\n";

else
cout << "The small one is the better buy.\n";

cout << "Buon Appetito!\n';

return 9;

}

double unitprice(int diameter, double price)
{

const double PI = 3.14159;

double radius, area;

radius = diameter/double(2);
area = PI * radius * radius;
return (price/area);

Sample Dialogue

Welcome to the Pizza Consumers Union. =
Enter diameter of a small pizza (in inches): 10
Enter the price of a small pizza: $7.50 A
Enter diameter of a large pizza (in 1nches): 13
Enter the pr1ce of a 1arge pizza: $14.75

Small pizza:

Diameter = 10 inches L
Price = §7.50 Per square 1nch $0.10

Large pizza:

Diameter =:13 inches = i

Price = $14.75 Per square inch = $@ 11

The small one is the better buy

Buon Appetito!

O
Information Hiding ‘?’

(Black Box Analogy)

mA function’s author (programmer) should know
everything about how the function does its job,
but nothing but specifications about how the
function will be used.

mThe client programmer -- the programmer who
will call the function in her code -- should know
only the function specifications, but nothing
about how the function is implemented.

Display 3.7 Page 118

Definition 1

double new_ ba'lance(doub?e ba'lance_par‘, double rate_par)

{ o
double 1nter‘est fr‘action interest: 1
1nterest_1:ractr on rateﬁpar/ltaa §: i
interest = 1nterest _fraction*balance. par
“iireturn (ba?ance par o+ ‘mter*est}---::
1 .
Definition 2

double new_balance(double ba.'tance par doub?e rate_ par)

i R
double interest f
3 nterest_FraEt_‘"l on
updated_balance =
' return updated_ba
¥ H i L

rad

lance;

BRAND CAMP

By TOP’\ ICI'S L\ l:urng

WE ENCOURAGE OUR
Students TO THINK
QUTSIDE OF THE BoX

oM

N TN

Cl~ DOl r APTANLIS £ an

i Local Variables

= Variables that are defined within the
function are local variables.

= Local variables belong only to the
function and cannot be used outside of
the function.

= Even if a variable within the main
program has the same name, they are
different variables.

A

i Scope

Variables local to a function are said to
have that function as their scope.

Variables that are defined within the main
program are local to the main program
and have the main program as their
scope.

i Global Constants and Parameters

= If a constant will be used by more than
one function, its declaration can be
placed outside the body of the main
program at the beginning of your
program making the constant global.

= A global constant can be used in any
function that follows (including main).

i Example of Global Constants

//directives

#include <iostream>
#include <cmath>
using namespace std;

//global constants
const double Pl = 3.14;

//function prototypes

int main()

{
//body of main

}

i Global variables

= It is possible to declare global variables in
the same way as global constants (without
the const, of course)

= But unlike constants that can’'t be changed,
there can be confusion caused by using
global variables. For example, a function
uses the same variable name as one of the
global variables.

Call-by-Value parameters

= The formal parameters for the function, which are
local to the function, are initialized to the value of the
arguments passed in the function call.

= Even if they have the same name, the variables local
to main are not changed by the function, even if it
has the same name as the parameter.

= Remember that you do not have to declare a passed
parameter in the function.

= Order of arguments is the order they're plugged into
parameters, regardless of what they’re called.

i Take a break!!!

i Void Functions

= does not return a value

= There is no “return expression; * statement
(Though a return; with no expression is allowed.)

= keyword void where type returned would be

= void type replaces the more familiar return type
such as /nt or double.

= A call to a void function is an executable
statement, rather than being part of an
expression.

i Syntax for a Void function

/1 function prototype
void function_name (parameter list);

// function definition
void function_name (parameter list) // header

{
//function body

¥

i Examples

= Example without a return statement :
Display 4.2 page 160

= Example with a return statement:
Display 4.3 page 162

10

Display 4.2 void-Function - (1 of 4)

/IProgram to convert a Fahrenheit temperature to a Celsius temperature.

#include <iostream>

void initialize_screen();
/[Separates current output from the output
/lof the previously run program.

double celsius(double fahrenheit);
/IConverts a Fahrenheit temperature to a Celsius temperature.

void show_results(double f_degrees, double ¢c_degrees);
/[Displays output. Assumes that c_degrees

/ICelsius is equivalent to f_degrees Fahrenheit.

Display 4.2 void-Function - (2 of 4)
int main()

{

using namespace std;
double f_temperature, ¢c_temperature;

initialize_screen();
cout << "'l will convert a Fahrenheit temperature™
<< ' to Celsius.\n"*
<< "Enter a temperature in Fahrenheit: **;
cin >>f_temperature;

¢_temperature = celsius(f_temperature);

show_results(f_temperature, c_temperature);
return O;

11

Display 4.2 void-Function - (3 of 4)

/IDefinition uses iostream:

void initialize_screen()

{
using namespace std;
cout << endl;
return; /[The return is optional.

double celsius(double fahrenheit)

{
return ((5.0/9.0)*(fahrenheit - 32));

Display 4.2 void-Function - (4 of 4)

/[Definition uses iostream:
void show_results(double f_degrees, double c_degrees)

{

using namespace std;

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(1);

cout << f _degrees
<< " degrees Fahrenheit is equivalent to\n"
<< c_degrees << " degrees Celsius.\n";

return; / The return is optional.

12

Return Statements in void functions

= In C++ both void functions and value-returning
functions can have return statements.

= In value-returning functions the return must have an
argument. In void-functions, the return must NOT
have an argument.

= There is an implicit (compiler generated) return
statement at the final closing brace of a void
function. This does not mean you never need a
return; in a void-function.

Display 4.3 page 162 — Use of return in a void function

// function prototype
void ice_cream_division (int number, double total_weight);

// function definition

void ice_cream_division (int number, double total_weight)

{
using namespace std;
double portion;

if (number == 0)

return; // return if none
portion = total_weight / error;
cout << Each one receives “ << portion

<< “ ounces of icecream.” << endl;

13

Why do we need call-by-reference
parameters?

= Input subtasks should be carried out with a function call.
This is not adequate for more than one return value. We
need another mechanism.

= With a Call-by-Value parameter, the corresponding
argument is only read for its value. The argument can be
variable, but this is not necessary. The parameter is
initialized with the value of the value-parameter and the
value of the variable itself does not change.

= With Call-by-Reference, the corresponding argument must
be variable, and the behavior of the function is as if the
variable were substituted for the parameter.

i Call-by-reference parameters

m Itis the address (memory location) of the variable
that is passed to the function, not the value, so it
acts as if the actual variable is substituted for the
parameter.

= The value of the variable is changed by the
function.

= The ampersand & is added to the type name to
indicate call-by-reference.

= Call by reference can be used to return multiple
values

14

Display 4.4 Call by Reference parameters (1 of 4)

/[Program to demonstrate call-by-reference parameters.

#include <iostream>

void get_numbers(int& inputl, int& input2);
/IReads two integers from the keyboard.

void swap_values(int& variablel, int& variable2);
/linterchanges the values of variablel and variable2.

void show_results(int outputl, int output2);

/IShows the values of variablel and variable2, in that order.

Display 4.4 Call by Reference parameters (2 of 4)

int main()

{

int first_num, second_num;

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);

return O;

15

Display 4.4 Call by Reference parameters (3 of 4)

/lUses iostream:
void get_numbers(int& inputl, int& input2)
{
using namespace std;
cout << "Enter two integers: ";
cin >>inputl
>> input2;

}

void swap_values(int& variablel, int& variable2)

{

int temp;

temp = variablel;
variablel = variable2;
variable2 = temp;

Display 4.4 Call by Reference parameters (4 of 4)

/lUses iostream:
void show_results(int outputl, int output2)
{
using namespace std;
cout << "In reverse order the numbers are: "

<< outputl << << output2 << endl;

16

Mixed parameter lists

It is entirely feasible to have call-by-value parameters
mixed in with call-by- reference parameters.

Example:
void good_stuff (int& parl, int par2, double& par3);

good_stuff (argl, 17, arg3); //function call

The constant 17 is permissible because par2 is a value parameter.

The code in the body of the function has the ability to change argl
and arg3.

® Pitfall ®

Omitting an ampersand (&) when you intend a
reference parameter is a mistake that bites twice:

= First it makes your code run incorrectly, the compiler
probably won't catch it.

= And it is very difficult to find because /t /ooks right.

Example: Display 4.7, page 175

17

Display 4.7 Inadvertent local variables (1 of 3)

/I Inadvertent local variables. Shows what happens when you omit & when
you want call-by-reference parameters.

#include <iostream>

void get_numbers(int& inputl, int& input2);
/IReads two integers from the keyboard.

void swap_values(int variablel, int variable2); «~—Forgot the &
/lnterchanges the values of variablel and variable2.

void show_results(int outputl, int output2);
/IShows the values of variablel and variable2, in that order.

Display 4.7 Inadvertent local variables (2 of 3)

int main()

{

using namespace std;
int first_num, second_num;

get_numbers(first_num, second_num);
swap_values(first_num, second_num);
show_results(first_num, second_num);

return O;

18

Display 4.7 Inadvertent local variables (1 of 3)

void swap_values(int variablel, int variable2)

{
int temp;
temp = variablel; Forgot the & here, which
variablel = variable2; Makes these inadvertent local variables
variable2 = temp;
}

/lUses iostream:
void get_numbers(int& inputl, int& input2)
{
using namespace std;
cout << "Enter two integers: ";
cin >>inputl
>> input2;

}

/lUses iostream:
void show_results(int outputl, int output2)
{
using namespace std;
cout << "In reverse order the numbers are: "
<< outputl << " " << output2 << endl;

Procedural Abstraction

A function may call another function.

Function definition cannot be placed within a
function definition, must be placed after main
or in another file.

The situation is exactly the same as if the first
call had been in the main function.

Example: Display 4.8 page 178

Display 4.8 Function Calling Another Function (1 of 4)

//Program to demonstrate a function calling another function.
#include <iostream>

void get_input(int& inputl, int& input2);
/IReads two integers from the keyboard.

void swap_values(int& variablel, int& variable2);
/lnterchanges the values of variablel and variable2.

void order(int& nl, int& n2);
/IOrders the numbers in the variables n1 and n2
/Iso that after the function call n1 <= n2.

void give_results(int outputl, int output2);
/IOutputs the values in outputl and output2.
/IAssumes that outputl <= output2

Display 4.8 Function Calling Another Function (1 of 4)

int main()

{

int first_num, second_num;

get_input(first_num, second_num);
order(first_num, second_num);
give_results(first_num, second_num);
return O;

20

/IUses iostream:
void get_input(int& inputl, int& input2)
{
using namespace std;
cout << "Enter two integers: ";

cin >> inputl >> input2;

void swap_values(int& variablel, int& variable2)

{

int temp;

temp = variablel;
variablel = variable2;

variable2 = temp;

void order(int& n1, int& n2)
{
if (n1>n2)

swap_values(nl, n2);

/IUses iostream:
void give_results(int outputl, int output2)
{
using namespace std;
cout << "In increasing order the numbers are: "

<< outputl << " " << output2 << endl;

21

Designing, testing and debugging
functions

Programmers typically write functions, not programs

Every function should be designed, coded and tested as a separate unit
from the rest of the program.

To test a function you need a driver program.

Every function should be tested in a program in which every other
function in that program has already been completely tested and
debugged.

If your function uses another function you may need to write a stub.

This is a catch 22. You need a framework to develop and test, but the
framework must be debugged as well.

i Examples of drivers and stubs

= Display 4.10 Driver Program - page 188

= Display 4.11 Program that uses a Stub — page 189

22

Summary

= All subtasks in a program can be implemented as functions, either as
void-functions or value-returning functions.

= A formal parameter is a kind of place holder that is filled with a
function argument when the function is called.

= In call-by-value, the value of the argument is copied into the parameter.
An argument corresponding to a call-by-value parameter will not be
changed by the call.

= In call-by-reference the argument must be a variable, and the effect is as
if the variable had been substituted for the parameter. An argument
corresponding to a call-by-reference parameter may be changed by the
call, but this is not necessary. The syntax to make a parameter call-by-
reference is to insert an ampersand (&) between the type and the
parameter in the function prototype and function header.

Function prototype comments should be divided into Pre-conditions and Post-
conditions. The pre-condition describes the requirements that must be in effect
when the function is called, and the post-conditions describe the effect of the call,
including any returned value and/or changed arguments.

Every function should be tested in a completely tested and debugged program.
= A driver program is a short program that does nothing but test a function.

= A stub is a simplified function used in place of a function definition that has
not yet been tested (perhaps not written) so that the rest of the program can be
tested.

23

i Take Another Break

You probably
need it by now!

triangle.cpp
iy
17 ECC EDP-121 Spring 2001 /7
1/ 1/
// Type of Assignment: Take Home //
// Problem Number: 5 1/
// Author: Glenn Mayer 17
// Section Number: 99 /7
// Date Assigned: 01/10/01 1/
// Program Name: Triangle Program //
// Textbook Reference: Handout #5 1/
// File Name: triangle.cpp 1/
1/ /1
// Purpose of Program: 1/
1/ Thia program will read in three floating point numbers and 1/

1/ will determine if they could form the three sides of a triangle. /7
HITIPELTIPLIEL LI L TR EL LR E L LTI E LIl y

// Include Section
#include <iostream.h>

// Main Program

int main()
{
// variable Declations
double sidel; J// the first side entered by the user
double side2; // the second side entered by the user
double side3; // the third side entered by the user
int triangle; // this is the results of the triangle calculation
const int good = 1; J/ this is the value that goes into the variable
// triangle if the three sides make a triangle
const int bad = 2; // this is the value that goes into the variable
// triangle if the three sides do not make a triangle
char answer; // the users answer to the question

// "do you want to do it again?"
// a 'y’ or a '¥' is YES, anything else is
// interpreted as NO

24

J// Output Identification
cout << *Take Home #5 by Glenn Mayer - "
<< "Triangle Program\n\n";

// Main Program

// describe program's purpose to the user

cout << "This program will read in three floating point numbers and\n";

cout << "will determine if they could form the three sides of a triangle.\n\n";

do // keep repeating the code as long as the user wants
{

// get the three sides from the user

cout << "\nEnter side 1: ";

cin >>» gidel; // get side 1
cout << "Enter side 2: ";
cin >>» Bide2; // get side 2
cout << "Enter eside 3: *;
cin >>» gide3; /! get side 3

triangle.cpp

// determine if a triangle can be made

I Note: For each side on a triangle, the side must be

I shortezr that the sum of the opposite two aides

if(sidel < (side2 + side3) && // make sure that side 1 is not too long
side2 < (sidel + side3) && // make sure that side 2 is not too long

side3 < (sidel + side2)) // make sure that side 3 is not too long
{

triangle = good; // mark this triangle as good
}
else

triangle = bad; // mark this triangle as bad
}
// print the results
cout << "It is "; // print the first part of the sentence
if (triangle == bad) // if this 1s a bad triangle
{

cout << "NOT "; // print the word NOT

}
cout << "possible to make a triangle with sides of "y // print rest of sentence

cout << sidel << ", " << side2 << ", and " << sided << ".\n";
/] check to see if they want to do it again

cout << "Do you wish to repeat the calculation? (Y or N) : ";
cin >> answer;

} while (anBwer == 'y’ || anawer == 'Y');

// let user know that its &1l over
cout << "\n\anEnd Program.\n";

return 0;

25

Take Home #5 by Glenn Mayer - Triangle Program

This program will read in three floating point numbers and
will determine if they could form the three sides of a triangle.

Enter side 1: 3

Enter side 2: 5

Enter side 3: 5

It is possible to make a triangle with sides of 3, 5, and 5.
Do you wish to repeat the calculation? (Y or N) : y

Enter side 1: 3

Enter side 2: 4

Enter side 3: 10

It is NOT possible to make a triangle with sides of 3, 4, and 10.
Do you wish to repeat the calculation? (Y or N) : ¥

Enter side 1: 5

Enter side 2: 10

Enter side 3: 5

It is NOT possible to make a triangle with sides of 5, 10, and 5.
Do you wish to repeat the calculation? (Y or N) : n

End Program.
Press any key to continue

26

