Today's lecture is all about the System Unit, the Motherboard , and the Central Processing Unit, Oh My!

Or "what's happening inside the computer?"

Digital Data Representation

- Computers may seem smart, but they can only understand two states.
 - On/Off
 - Positive/Negative
 - Current/No Current
 - Yes/No

The digits 1 and 0 represent these binary states.

Binary Numbers

0 and 1 are binary digits called bits

eight bit binary numbers are bytes

half of a byte (4 bits) is a nibble

One byte represents 256 separate symbols or characters

Characters and symbols are defined using a coding scheme like ASCII

 $0011 \ 0100 = 4$ $0011 \ 0110 = 6$ $0100 \ 0101 = E$

8-BIT BYTE FOR THE NUMBER 4

8-BIT BYTE FOR THE NUMBER 6

8-BIT BYTE FOR THE LETTER E

Coding Schemes

ASCII	SYMBOL	EBCDIC	ASCII	SYMBOL	EBCDIC
00110000	0	11110000	01001110	N	11010101
00110001	1	11110001	01001111	0	11010110
00110010	2	11110010	01010000	P	11010111
00110011	3	11110011	01010001	0	11011000
00110100	4	11110100	01010010	R	11011001
00110101	5	11110101	01010011	S	11100010
00110110	6	11110110	01010100	Т	11100011
00110111	7	11110111	01010101	U	11100100
00111000	8	11111000	01010110	V	11100101
00111001	9	11111001	01010111	W	11100110
01000001	×	11000001	01011000	X	11100111
01000010	В	11000010	01011001	Y	11101000
01000011	C	11000011	01011010	Z	11101001
01000100	D	11000100	00100001	1	01011010
01000101	E	11000101	00100010		01111111
01000110	F	11000110	00100011	#	01111011
01000111	G	11000111	00100100	\$	01011011
01001000	Н	11001000	00100101	%	01101100
01001001		11001001	00100110	8	01010000
01001010	J	11010001	00101000	1	01001101
01001011	K	11010010	00101001	1	01011101
01001100	L	11010011	00101010		01011100
01001101	M	11010100	00101011	+	01001110

System Unit (or chassis)

The box-like case that houses the electronic components of the computer.

- motherboard
- expansion cards
- hard drive
- floppy and CD drives
- o bays
- power supply

Motherboard

The main circuit board in the computer contains:

- CPU or Microprocessor chip
- System clock
- Battery
- Heat Sink/Fan
- O Ports
- Expansion slots

- Buses allow communication between components
- Memory RAM and ROM

Motherboard

Central Processing Unit

The Central Processing Unit, also called the microprocessor or chip, is the brain of the computer. It interprets and carries out the instructions that operate a computer.

The CPU has two basic parts:

- The Control Unit coordinates and controls all parts of the computer.
- The Arithmetic Logic Unit (ALU) performs the arithmetic, logical, and comparative operations.
 (The Floating Point Unit (FPU) performs arithmetic operations requiring decimals.)

Control Unit

- 1. gets instruction/data from memory (called fetching)
- 2. translates the instruction for ALU/FPU (decoding)
- 3. performs the command (executing)
- 4. writes result to memory (storing)

rithmetic Logic Unit

• Arithmetic (+, - , x, /)

 \circ Comparative (<, = , >)

O Logical (AND, OR, NOT)

Registers – are special high-speed storage locations in the processor that temporarily hold data and instructions during the machine cycle.

Generally, more registers and bigger registers translates to increased CPU performance.

store location of instruction
store instruction while decoding
store data while its being processed
store results of calculation

System Clock

- generates regular pulses or ticks
- each tick is a clock cycle
- clock speed (or rate) is the speed at which a processor executes instructions

• Clock speeds are measured in gigahertz (billion ticks per second)

Speeding things up

• Pipelining – CPU begins executing a second instruction before the previous instruction has completed its machine cycle.

• Coprocessors – additional processor chip that assists the processor in performing specific tasks.

• Parallel Processors – Using more than one processor to divide up the work.

MACHINE CYCLE (without pipelining):

MACHINE CYCLE (with pipelining):

Parallel Processing

Be sure you can:

- Define the terms bit and byte
- Explain why computers use binary numbers
- Understand how the binary number system works
- Explain why programmers use octal or hexadecimal number systems
- List the prefixes (and their numeric equivalents) used to define large groups of bytes
- Define the two parts of the Central Processing unit
- Explain what the ALU does
- Explain what the control unit does
- List the four steps in the machine (or instruction) cycle
- Describe the 3 types of operations performed by the ALU
- Explain what a register is
- Explain how the system clock affects processing speed
- Define pipelining, parallel processing and co-processors
- Explain the purpose of a heat sink

Homework/Labs

- Read pages 36 38 on Memory
- Do the Binary/Hex/Decimal conversion Worksheet (You probably want to create a "cheat" sheet first)