
1

Lecture 5

Selection Statements

Review from last week

cin and cout
directives
escape sequences
member functions cout.width(20);
formatting flags cout.setf(ios::fixed);
manipulators setwidth(20);

2

What we will learn about this
week

Simple Flow of Control
Sequential
Branching mechanisms

If / Else
Switch

Program Style

“If you come to a fork in the road, take it.” – Yogi Berra

Sequence

3

Branching (Selection)
Chose between alternatives

Calculate an employee’s pay:

pay = rate * 40 + 1.5 * rate * (hours – 40)
if the employee has worked overtime

OR
pay = rate * hours
if the employee did not work overtime

If Statement

4

If - Else Statement

Syntax of the if – else statement

if (Boolean_Expression)
Yes_Statement;

else
No_Statement;

(See display 2.7 page 68 of book)

if (Boolean_Expression)
{

yes_statement1;
yes_statement2;
…

}
else
{

no_statement1;
no_statement2;

…
}

5

Comparison Operators

Should not have a space between the two symbols!!!!

== is equal to if(x == 6)
!= is not equal to if(count != 0)
< is less than if(max < 100)
<= is less than or equal to if(data <= 17)
> is greater than if(left > 2)
>= is greater than or equal to if(a>=b)

(be careful not to use a single =)

Comparison Operators
(Display 2.8 page 69)

6

precedence (page 337)

1. unary operator +, -, ++, --, !
2. binary arithmetic operators *, /, %
3. binary arithmetic operators +, -
4. Boolean operators <, >, <=, >=
5. Boolean operators ==, !=
6. Boolean operators &&
7. Boolean operators ||

PITFALL: using = instead of ==

if (x = 12)

cout << “x is equal to 12”;
else

cout << “x is not equal to 12”;

The second expression is NEVER executed, regardless of the
value of x before this statement is encountered.

WORSE, after this if statement executes, the expression
x = 12 HAS ASSIGNED the value 12 to x.

Why? The expression x = 12 returns the value 12, which is
converted to the bool value true, which is used by the if.

7

Boolean Expressions

An expression that can be thought of as true or false

Boolean expressions use !<>=||&&, and evaluate to
true and false

Integers in Boolean Expressions:
0 is converted to false
Any non-zero integer is converted to true

if (integer_value)
cout << “Not zero”;

else
cout << “Is zero”;

Programming example
(Display 2.6 page 67)

#include <iostream>
int main ()
{

int hours;
double gross_pay, rate;

cout << “Enter the hourly rate of pay: $”;
cin >> rate;
cout << Enter the number of hours worked, \n”

<< rounded to a whole number of hours: “;
cin >> hours;

if (hours > 40)
gross_pay = rate*40 + 1.5*rate*(hours-40);

else
gross_pay = rate*hours;

8

if – else continued

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

cout << “Hours = “ << hours << endl;
cout << “Hourly pay rate = $” << rate << endl;
cout << “Gross pay = $” << gross_pay << endl;

return 0;
}

AND &&

9

Boolean AND operator

AND && if (a>b && count == 0)

B1 B2 B1 && B2

False False False

False True False

True False False

True True True

OR ||

10

Boolean OR operator

OR || if (a>b || count == 0)

B1 B2 B1 || B2

False False False

False True True

True False True

True True True

In mathematics x < y < z is short hand for x < y && y < z.

In C++, this is not true. It is still valid C++, but isn’t what you
expect from the mathematics. In C++ the precedence rules require
x < y < z be evaluated like this: (x < y) < z

The parenthesized expression returns a bool value. The <
requires the same type on both sides. The bool value gets
converted to the int value 0 (for false) or 1 (for true). Then 0 <z or
1 < z compiles. And gives (most of the time) a wrong answer!

PITFALL: strings of
inequalities

11

Nested Ifs

More readable if indentation
rules are broken:

12

This format works because the
conditions are mutually exclusive:

Dangling Else

if (fuel < 0.75)
{

if (fuel < 0.25)
cout << “Fuel low!\n”;

}
else

cout “Fuel over ¾ full.\n”;

13

Multi-way statements

An If statement is a two-way branch.
When you want three or four way branches,

you can nest the If statements.

A switch statement is another way to
implement a multi-way branch.

14

Take a Break!

15

Programming Style
(or how not to write confusing code)

Clarity and Style

Your goal is not just to get a program to
work.
You are graded on both program clarity and
correctness:

Comments are important!
A correct header is important!
Output identification is important!
Spacing and Indentation are important!
Clear and concise code is important! (KISS)

16

Programming Style

Group like things together
indent
leave a blank line

Comments
// comment follows until end of line
/* multi-line comment ends with */

Use Headers (I will no longer grade programs without
names in source and output)

Writing good code

If the problem is complex, make sure you have a
game plan (algorithm).
Write one section of code at a time, test it, and
when it works move on to the next section.
Comment the main sections of code, then after the
program is done, go back and add additional
comments to clarify what you are doing.
Remember to use blank lines to group like
statements together.
Proper indentation also makes the code more
legible.

17

18

19

20

21

22

Re-submit Programs

Remember that you can re-submit your
program and I will average the two grades as
the final grade for the project.
Turn in both the original and updated
programs when you re-submit.
Remember to change the header on the
updated program.
Turn the programs in to the re-submit folder!

23

Reading Assignment

Sections 3.1, 3.2, 3.3
(pg 99-117)

Labs

In Class:
Room Capacity
Programming Project #6 page 95
Simple Version – Runs Once

Take Home:
Days of the Week

