
What we will learn about this
week:

Types of errors

Variables

Data types

First Compile

Then Link

Compiler

The Compile/Link
Process:
Displays 1.4 & 1.5
pages 10 - 11

Library CodeObject Code (.obj)

Source Code (.cpp)

Executable Code (.exe)

Linker

Moth crushed in relay of Mark II
computer

Entered into the logbook of
Commodore Grace Hopper

(Mother of Cobol)

Types of errors

– design errors -- if you solved the wrong problem, you have
design errors.

– syntax errors -- violation of language’s grammar rules,
usually caught by the compiler, and reported by compiler
error messages.

– run-time errors -- a program that compiles may die while
running with a run-time error message that may or may not
be useful.

– logic error -- a program that compiles and runs to normal
completion may not do what you want. May be a design
error.

Debugging

Address errors one at a time:
Start with first error (all others could be cascade
errors)
Error might be on previous line
Watch spelling and semicolons
Watch spacing on output
Warnings Vs. Errors
Syntax errors (like omitting a “;”) vs. Runtime
errors (trying to divide by 0)
(Syntax basically means rules of grammar)
Syntax errors caught in the compiling process
Run-time errors caught when the program is run
Logic errors are not caught by the computer
(using a + instead of a *)

#include <iostream> An include directive (include iostream library)

using namespace std; Use the standard collection of names

int main() Declares main function

{ Start of main’s body

variable _declarations Declaration/initialization of variables

Statement1; Body of main

Statement2;

. . .

Statement_last;

return 0; Says “end program here”

} End of main’s body

Layout of simple C++ program

#include <iostream>
using namespace std;

int main()
{

int number_of_pods, peas_per_pod, total_peas;

cout << "Press return after entering a number.\n";
cout << "Enter the number of pods:\n";
cin >> number_of_pods;
cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;

total_peas = number_of_pods * peas_per_pod;

cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";
cout << "and ";
cout << peas_per_pod;
cout << " peas in each pod, then\n";
cout << "you have ";
cout << total_peas;
cout << " peas in all the pods.\n";

return 0;
}

Note
indentation
and spacing

Sample Output
Press return after entering a number.

Enter the number of pods:

10

Enter the number of peas in a pod:

9

If you have 10 pea pods

and 9 peas in each pod then

you have 90 peas in all of the pods.

Sample Student Output

Take a Break!

Identifiers
int number_of_pods, peas_per_pod, total_peas;

•The program manipulates data

•A variable sets aside memory for data and
gives that place a name.

•The name of a variable (or anything else in
C++ that needs naming) is called an
identifier.

•Always has a value (even if garbage)

Valid / Invalid Identifiers
• Always start with a letter or underscore
• Composed of letters, numbers and

underscores.
• Case sensitive (a not equal to A)
• Avoid reserved words (appendix 1)
• Use descriptive names

Valid Examples:
x, _abc, A_2b, ThisIsAVeryLongIdentifier

Invalid Examples:
12, 3X, %change, myFirst.c, data-1

Avoid reserved words
Appendix 1

Variable names should be
meaningful

Good:
distance
height
dimes

Bad:
var1
x

Variable Declaration

Every variable in C++ must be declared.
A declaration introduces a name to the compiler and specifies
the type of data that is to be stored in the variable.
A variable declaration has the form
Type_name variable_name1, variable_name2, … ;
The kind of data held in a variable is it type.
You must declare all variables prior to use.

Type_name Variable_name_1, Variable _name_2;

Examples:
int number_of_bars;
double distance, time, speed;

Initializing variables
All variables have a value even if it is garbage. It is
generally a good idea to initialize your variables.

Examples:

int count=0, limit=10;
OR
int count(0), limit(10);

Beware of unBeware of un--initialized variables! initialized variables!

Data Types
Integer
Float
Char
You must decide the appropriate type of
data to use:
What would you use to keep tract of
how many apples you have?
What would you use to keep tract of
how many pounds of applesauce?
What would you use for money?

Numeric Data Types
(May be different with a different compiler)

Type Memory Size

short 2 bytes -32,767 to 32, 767
int 4 bytes -2,147,483,647 to 2,147,483,647
long 4 bytes -2,147,483,647 to 2,147,483,647

float 4 bytes ~10-38 to 1038 (7 digits)
double 8 bytes ~10-308 to 10308 (15 digits)
long double 10 bytes ~10-4932 to 104932 (19 digits)

Number Types
2 is not the same as 2.0

(Display 2.2 page 57)

Char and Bool

char is a special type that is designed to hold single
members of the ASCII character set.

Uppercase and Lowercase not the same!
‘A’ <> ‘a’
“A” is not the same as ‘A’
char nine = ‘9’; is not the same as int nine = 9;
char nine = ‘9’; is not the same as char nine = 9;

bool has only two values: true and false.

Constants

Same as a variable except word the
keyword const in front.

const double PI = 3.14159;
Must have a value.
Generally done all in upper case.
You cannot change a constant while the
program is running.

Assignment Statements

In an assignment statement, the right hand side expression is
evaluated, then the variable on the left hand side is set to
this value.

Syntax: variable = expression;

Setting the value of variables:

num_of_bars = 37;
total_weight = one_weight;
num_of_bars = num_of_bars + 3;
total_weight = one_weight * num_of_bars

Arithmetic Operators
total_peas = number_of_pods * peas_per_pod;

The asterisk, *, is used for multiplication.

This line multiplies the already entered values of
number_of_pods and peas_per_pod to give a
value which is stored (assigned to) total_peas.

Common arithmetic operators are encoded:
Addition + Multiplication *
Subtraction - Division /

Precedence
When two operators appear in an arithmetic expression, there
are PRECEDENCE rules that tell us what happens.

Evaluate the expression,

X + Y * Z

by multiplying Y and Z first then the result is added to X.

Rule: Do inside most parentheses first, then

multiplication and division next,

additions and subtractions next, and

break all ties left to right.

Precedence Rules

Unary operators +, -, ++, --, and !

Arithmetic operators *, /, %

Arithmetic operators +, -

Boolean operators <, >, <=, >=

Boolean operators ==, !=

Boolean operators &&

Boolean operators ||

Highest

Lowest

Precedence
Appendix 2

Reading Assignment

Section 2.4 pages 46-54
Section 5.2 pages 216 - 231

Take a Break!

Comments

//
/* */
End of line comments
Single line comment
Block Comments

The Standard Header for this class

Go To Lmayer in the instructor folders (drive I) found
under “My Computer”. Then open the CIS121 folder.

TempConvertCtoF Problem Description:
Write a program that converts a temperature in degrees Celsius to the corresponding
temperature in degrees Fahrenheit. The program must read in a temperature (in
degrees Celsius) from the console. The program must display the converted
temperature to the console. The program should handle the temperatures as floating
point numbers (doubles).

Note: The following equation is used to convert Degrees C to Degrees F:
Deg_F = Deg_C * 9.0 / 5.0 + 32

Example Output:
The TempConvertCtoF program by Lynne Mayer

Please enter the temperature in Deg CF: 22
That is 71.6 Degrees Celsius.

Required Test Cases:
22
0

100
233

Skills:
●Var ●Con I/O ○Format ○Logic ○Loops ○Functions ○Call by Ref ○File I/O

○Arrays ○Strings ○GM

