
1

Lecture 2:
After completing this class, students will be able to:

Understand basic Computer Architecture
Identify the major components of a computer.
Understand how memory and memory addressing
work
Understand why programmers use binary and
hexadecimal numbers.
Recognize various types of computer errors.
Write a pseudocode description of an algorithm.
Identify the various phases of a software
development project.

Computer ArchitectureComputer Architecture

Input Output
Memory

Storage

CPU

2

Input/Output
keyboard
mouse
printer
joystick
monitor

Storage Devices
(called secondary memory)

Floppies
CD_ROM
Hard drives
Magnetic tape

3

Central Processing UnitCentral Processing Unit
The Central Processing Unit, also called the

microprocessor or chip, is the brain of the
computer. It interprets and carries out the
instructions that operate a computer, like:

running the operating system
coordinating the hardware devices
running application programs
allocating resources, such as memory

The CPU has two parts:
The Control Unit coordinates
and controls all parts of the
computer

The Arithmetic Logic Unit does
all the processing and
calculations (including word
processing)

0110011101110111011001110110
11100110101110111011101

4

Memory Addresses (RAM)

1
2
3
4
5
6
7
8
9

2 byte memory location
with address of 6

Binary Digits (bits)

Binary numbers use the base 2
number system.

Computers use binary.

Hexadecimal numbers use the
base 16 number system.

Programmers use Hex because
Hex converts easily to binary.

Example:
The decimal number 27 is

11011 in binary
2B in Hex

5

Example of ASCII:
Char. Dec. Octal Hex Binary

“A” 65 101 41 0010 0001
“B” 66 102 42 0010 0010
“Z” 90 132 5A 0101 1010
“a” 97 141 61 0110 0001
“b” 98 142 62 0110 0010
“!” 33 041 21 0010 0001
“?” 63 077 3F 0011 1111

“Hello” stored in memory:

0100 10001
2
3
4
5
6
7
8
9

0110 0110
0110 1100
0110 1100
0110 1111

6

Programming a Computer

A digital computer is a collection of electrical
switches.
The switches behave according to the laws of
physics

A digital computer is a collection of electrical
switches.

A

B
C

7

A program gives some meaning to the
switches and actions.

A

B

C

Algorithm

The “computer” does not understand weather, it is
simply computing an algorithm.

An algorithm is a sequence of precise instructions,
which leads to a solution.

8

Example of an algorithm (page 14)

How many times does a name occur in a list of names:
1. Get the list of names
2. Get the name being checked
3. Set a counter to zero
4. Do the following for each name on the list:

Compare the name on the list to the name being checked
If the names are the same, add one to the counter

5. Announce that the answer is the number given by the
counter

How do you write down an algorithm?

Flow Chart

Pseudo Code

Others (Nasi-Schniderman)

9

Program design

Problem solving phase (hard part)
Define the problem
Come up with an algorithm to solve the problem
Test the algorithm

Implementation phase (easy part)
Translate algorithm to programming language
Test the program

Quote from Donald Knuth
Computer programming is an art, because it applies

accumulated knowledge of the world,
because it requires skill and ingenuity, and especially

because it produces objects of beauty.
A programmer who subconsciously views himself (or

herself) as an artist will enjoy what he (or she) does
and will do it better.

10

Programming is an art form
that fights back.

Computer Errors:

Hardware flaws
Algorithm Error
Coding Error
Input Error (bad data)
Output Error (formatting)

11

Software Life Cycle
1. Analysis and specification of the

task (problem definition)
2. Design of the software

(algorithm design)
3. Implementation (coding)
4. Testing
5. Maintenance and evolution of

the system
6. Obsolescence

EXAMPLE OF ASSEMBLER(6502)

(program adds N elements in a table, the first entry in the table is the number of elements)

LDA #0 initialize sum (load accumulator)
STA SUMLO initialize sum
STA SUMHI initialize sum
TAY transfer accumulator into Y (init to 0)
LDA (BASE), Y Get N (number of elements)
TAY put N in register Y
CLC clear carry for add

ADLOOP LDA (BASE), Y get next element
ADC SUMLO add SUMLO to accumulator
STA SUMLO save result in SUMLO
BCC NOCARRY branch on carry clear
INC SUMHI SUMHI increased by one
CLC clear for next sum

NOCARRY DEY next element (decrement Y)
BNE ADLOOP back to ADLOOP if not equal to zero (branch)
RTS return from subroutine

12

//Addition program in C++
//This program adds 10 integers

#include <iostream.h>

int main ()
{
 int integer, sum; // declaration

 sum = 0; // initialize sum

for (n = 1 , n <= 10; n++)
{

cout << "Enter an integer\n"; // ask for an integer
 cin >> integer; // read an integer
 sum = sum + integer; // add integer to the sum

}

 cout << "Sum is " << sum << endl; // print sum

 return 0; //indicate that the program ended successfully
}

Reading Assignment

Read Chapter 1
section 1.3 and 1.4, pages 18 – 31

Read Chapter 2
section 2.1, pages 37 – 45
Section 2.3 pages 55 – 65
Section 2.5 pages 83 - 88

13

Take a Break!

Lab:
In Class:
Programming project #1 - page 36 “Peapods”

Lab #1: Programming Projects 2 & 3 page 37

14

Return to Lynne’s website

To return to Lynne Mayer’s website, click on one of
the following links:

Lynne’s homepage
CIS110
CIS121

