Bounded Monotonic Sequence
If a sequence {a,} is bounded and monotonic, then it converges.

Convergence of a Geometric Sequence
A geometric series with ratio r diverges if [r|>1. If 0 <|r| <1, then the series converges to the sum

iar”zﬁ, 0<|r|<1
n=0 -

nth Term

If Zan converges, then !m a, =0.
n=1

If lima, =0, then > a, diverges.

nN—o0
n=1

Integral Test
If f is positive, continuous, and decreasing for all x>1 and a, = f(n), then

ian and Tf(x)dx
n=1 i

either both converge or both diverge. (Note: These conditions need only be satisfied for all
x>N>1.)

p-Series
The p-series
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1. convergesif p>1,and
2. divergesif 0< p<1.

Direct Comparison Test
Let 0<a, <b, foralln.

1. If > b, converges, then > a, converges.
n=1

n=1
2. If ) a, diverges, then D _b, diverges.

n=1 n=1

Limit Comparison Test
Suppose that a, >0, b, >0, and

. a
lim—=2=L

n—o

where L is finite and positive. Then the two series » a, and ) b, either both converge or both
diverge.



Alternating Series Test
Let a, > 0. The alternating series

0

S (-1a, and >(-1)"a,

n=1 n=1
converge if the following two conditions are met.
1. lima, =0
n—oo
2. a,,<a,,foralln*

* This can be modified to require only that a,,, <a, for all n greater than some integer N.

n+1

Alternating Series Remainder
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Absolute Convergence

If the series ) _|a, | converges, then the series ) a, also converges.

Ratio Test

Let Zan be a series of non-zero terms.

... |a
1. > a, converges absolutely if lim—"% <1.
nN—oo an
: PRI o 18na
2. > a, divergesif lim—"2>1 or lim—"% =,
N—o0 an N—>o0! an
. .. PR - W
3. The Ratio Test is inconclusive if lim—= =1.
N—>00! a
n

Root Test

Let > a, be a series.

1. > a, converges absolutely if limg/|a,| <1.
Nn—o0

2. Y a, diverges if !mQ/H>1 or !mm:oo.

3. The Root Test is inconclusive if limy/la,| =1.

nN—oo



Taylor Polynomial
If f has n derivatives at c, then the polynomial

" (n)
P, ()= 10)+ FeXx-c)+ e e L oy
is called the nth Taylor polynomial fof fatc. If c=0, ther'l

2, (0= 10)+ 1010+ D0 4. Loy

n!

is also called the nth Maclaurin polynomial for f.

Power Series
If x is a variable, then an infinite series of the form

Dax" =a, +ax+ax’ +ax  +-+a X"+
n=0
is called a power series. More generally, and infinite series of the form

ian(x—c)n =a, +a,(x—c)+a,(x—c)’ +a,(x—c)’ +---+a, (x—c)" +--
n=0
is called a power series centered at ¢, where c is a constant.

Convergence of a Power Series
For a power series centered at c, precisely one of the following is true.

1. The series converges only at c.
2. There exists a real number R >0 such that the series converges absolutely for [x—¢| <R, and

diverges for [x—c|>R.
3. The series converges absolutely for all x.
The number R is the radius of convergence of the power series. If the series converges only at c,

R =0, and if the series converges for all X, R =c. The set of values of x for which the power
series converges is the interval of convergence of the power series.

The Form of a Convergent Power Series
If f is represented by a power series f(x)=>"a,(x—c)" forall x in an open interval | containing c,

then a, = f ™(c)/n! and

(= £(6) 1OHx-0)+ D 4ot

Taylor Series
If a function f has derivatives of all orders at x = ¢, then the series

= f()(c \ , f'(c f™(c \
5 Lo —1(0)+ -0 - Do e Lo -
is called the Taylor series for f(x) at c. Moreover, if ¢ =0, then the series is the Maclaurin

series for f.



Guideline for Finding a Taylor Series
1. Differentiate f(x) several times and evaluate each derivative at c.

f(c), f'(c) f"(c) f(c).... t(c), ...

Try to recognize a pattern in these numbers.

2. Use the sequence developed in the first step to form the Taylor coefficients a, = f (”)(c)/n!, and
determine the interval of convergence for the resulting power series

£(0)+ 10+ 0 e Ao

n!

3. Within this interval of convergence, determine whether or not the series converges to f(x).

Power Series for Elementary Functions

. Interval of
Function C
onvergence
21 (= 2) (=2 — (=2 (x =)' = (D (x =) 4 0<x<2
X
L=1—x+x2—x3+x“—---+(—1)”x“+--- ~1<x<1
1+x
|nX:(X_1)_(X—1)2+(X—1)3_(X—1)4+...+—(_1)n(x‘1)n+... 0<x<2
2 3 4 n
2 3 X4 Xn
e =14+ Xx+—4+ = 4+ 4.4 4. — < X<
20 3 4 n!
¥ x5 xT x® (_1)nX2n+1
SINX=X——+———+——-4—+-- —00 <X <0
3 5 7o (2n +1)
x2 x* xb X (-1)"x*"
COSX=1l-—+———+——of >+ —00 <X <0
2 4 6 8 (2n)
3 5 7 9 n., 2n+l
arctanx:x—X—+X——X—+X——---+w+--- -1<x<1
3 5 7 9 2n+1
: x> 1.3x> 1.3.5x’ (2n)x>"
arcsin X = X + + - 4ot > -1<x<1
2.3 245 2.4.6-7 (2"n!)(2n+1)
2 & 4
(1+x)k:1+kx+k(k_1)x +k(k—1)(k—2)x +k(k—1)(k—2)(k—3)x trsa —l<x<1*

2! 3 4l

* The convergence at x = +1 depends on the value of k.



