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Bounded Monotonic Sequence 
If a sequence {an} is bounded and monotonic, then it converges. 
 
Convergence of a Geometric Sequence 
A geometric series with ratio r diverges if 1≥r .  If 10 << r , then the series converges to the sum 
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Integral Test 
If f is positive, continuous, and decreasing for all 1≥x  and ( )nfan = , then  
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either both converge or both diverge.  (Note: These conditions need only be satisfied for all 
1>≥ Nx .) 

 
p-Series 
The p-series 
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1. converges if 1>p , and  
2. diverges if 10 ≤< p . 
 
Direct Comparison Test 
Let nn ba ≤<0  for all n. 
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Limit Comparison Test 
Suppose that 0>na , 0>nb , and  
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where L is finite and positive.  Then the two series ∑ na  and ∑ nb  either both converge or both 
diverge. 
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Alternating Series Test 
Let 0>na .  The alternating series 
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converge if the following two conditions are met. 
1. 0lim =

∞→ nn
a  

2. nn aa ≤+1 , for all n* 
 
* This can be modified to require only that nn aa ≤+1  for all n greater than some integer N. 
 
Alternating Series Remainder 
 
 1+≤=− NNN aRSS  
 
Absolute Convergence 
 
If the series ∑ na  converges, then the series ∑ na  also converges. 
 
Ratio Test 
 
Let ∑ na  be a series of non-zero terms. 
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Root Test 
 
Let ∑ na  be a series. 
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Taylor Polynomial 
If f has n derivatives at c, then the polynomial 
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is called the nth Taylor polynomial for f at c.  If 0=c , then 

 ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )n
n

n x
n

fxfxffxP
!
0

!2
0''0'0 2 ++++= "  

is also called the nth Maclaurin polynomial for f. 
 
Power Series 
If x is a variable, then an infinite series of the form 
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is called a power series.  More generally, and infinite series of the form 
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is called a power series centered at c, where c is a constant. 
 
Convergence of a Power Series 
For a power series centered at c, precisely one of the following is true. 
 
1. The series converges only at c. 
2. There exists a real number 0>R  such that the series converges absolutely for Rcx <− , and 

diverges for Rcx >− . 
3. The series converges absolutely for all x. 
 
The number R is the radius of convergence of the power series.  If the series converges only at c, 

0=R , and if the series converges for all x, ∞=R .  The set of values of x for which the power 
series converges is the interval of convergence of the power series. 
 
The Form of a Convergent Power Series 
If f is represented by a power series ( ) ( )∑ −= n

n cxaxf  for all x in an open interval I containing c, 
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Taylor Series 
If a function f has derivatives of all orders at cx = , then the series 
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is called the Taylor series for ( )xf  at c.  Moreover, if 0=c , then the series is the Maclaurin 
series for f. 
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Guideline for Finding a Taylor Series 
1. Differentiate ( )xf  several times and evaluate each derivative at c. 
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Try to recognize a pattern in these numbers. 
 
2. Use the sequence developed in the first step to form the Taylor coefficients ( ) ( ) !ncfa n

n = , and 
determine the interval of convergence for the resulting power series 
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3. Within this interval of convergence, determine whether or not the series converges to ( )xf . 
 
 

Power Series for Elementary Functions 

Function  Interval of 
Convergence
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11 <<− x * 

* The convergence at 1±=x  depends on the value of k.   
 


