Proof of the Integral Test

f positive, continuous, and decreasing for x >1 means f has the general shape:
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Partition the interval [L, n] into n—1 unit intervals.
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Next, consider n—1 inscribed and circumscribed rectangles as illustrated below:
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From the two sets of rectangles, we can see that
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Using the nth partial sum, S, = f(1)+ f(2)+---+ f(n), statement (1) can be written as:
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If we assume that J' f(x)dx converges to L, it follows from statement (2) that for n>1
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Since f is positive for all X, a, is positive for all nand S is monotonic increasing. Statement
(3) shows that S, is also bounded above, so by Theorem 9.5, the sequence {Sn} must converge.
Therefore, the series Zan converges.

To show the other direction, we go back to statement (2). It follows that for n>1
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If we assume J' f(x)dx diverges, then statement (4) implies that the sequence {S, } also diverges.
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So, the series Zan diverges.




