
Proof of the Integral Test 
 
 
f positive, continuous, and decreasing for 1≥x  means f has the general shape: 

 
 
 
Partition the interval [ ]n,1  into 1−n  unit intervals. 

 
 
 
Next, consider 1−n  inscribed and circumscribed rectangles as illustrated below: 
 

 
 
From the two sets of rectangles, we can see that  
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Circumscribed rectangles: 
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Inscribed rectangles: 
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Using the nth partial sum, ( ) ( ) ( )nfffSn +++= 21 , statement (1) can be written as: 
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If we assume that ( )∫
∞

1

dxxf  converges to L, it follows from statement (2) that for 1≥n  
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Since f is positive for all x, na  is positive for all n and nS  is monotonic increasing .  Statement 
(3) shows that nS  is also bounded above, so by Theorem 9.5, the sequence { }nS  must converge.  
Therefore, the series ∑ na  converges. 
 
 
To show the other direction, we go back to statement (2).  It follows that for 1≥n  
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If we assume ( )∫
∞
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dxxf  diverges, then statement (4) implies that the sequence { }nS  also diverges.  

So, the series ∑ na  diverges.  
 
 
 
 
 


