Exam 1 Review

Note: This is not a complete list of topics – you should study your lecture notes and homework in addition to reviewing the items listed here.

1. natural logarithmic function

a. definition:
$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

b. properties:

$$\ln 1 = 0$$

- $\ln e = 1$
- $\ln(ab) = \ln a + \ln b$
- $\ln(a^n) = n \ln a$

•
$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

c. differentiation:

$$\frac{d}{dx} \left[\ln u \right] = \frac{u'}{u}$$

- d. logarithmic differentiation
 - i. take the natural log of both sides of the equation
 - ii. use the properties of natural log to simplify the equation
 - iii. differentiate both sides of the equation with respect to x
 - iv. solve for *y*'
- v. substitute back in for *y*, so your answer is in terms of *x* only e. integration:

$$\int \frac{1}{u} du = \ln |u| + C$$

- 2. inverse functions
 - a. A function has an inverse if and only if it is one-to-one.
 - b. You should know the strategy for finding an inverse.

c. If f and g are inverses,
$$g'(x) = \frac{1}{f'(g(x))}, f'(g(x)) \neq 0$$
.

3. exponential functions

a.
$$f(x) = \ln x$$
 and $g(x) = e^x$ are inverses
b. $\frac{d}{dx}(e^u) = e^u u^u$
c. $\int e^u du = e^u + C$

4. bases other than *e*

a. definition:

i.
$$a^x = e^{(\ln a)x}$$

ii. $\log_a x = \frac{1}{\ln a}$

ii. $\log_a x = \frac{1}{\ln a} x$ b. $f(x) = a^x$ and $g(x) = \log_a x$ are inverses

c. derivatives:

i.
$$\frac{d}{dx}(a^{u}) = (\ln a)a^{u}u'$$

ii.
$$\frac{d}{dx}(\log_{a} u) = \frac{1}{(\ln a)u}u'$$

- d. integrals: $\int a^u du = \frac{1}{\ln a} a^u + C$
- 5. inverse trigonometric functions
 - a. definitions (see handout)
 - i. know how to evaluate an inverse trigonometric function
 - ii. know how to express in terms of x for example: cos(arcsin 2x)
 - b. derivatives

$$\frac{d}{dx}[\arcsin u] = \frac{u'}{\sqrt{1 - u^2}} \qquad \frac{d}{dx}[\arccos u] = \frac{-u'}{\sqrt{1 - u^2}} \qquad \frac{d}{dx}[\arctan u] = \frac{u'}{1 + u^2}$$
$$\frac{d}{dx}[\arctan u] = \frac{-u'}{1 + u^2} \qquad \frac{d}{dx}[\arccos u] = \frac{u'}{|u|\sqrt{u^2 - 1}} \qquad \frac{d}{dx}[\arccos u] = \frac{-u'}{|u|\sqrt{u^2 - 1}}$$

c. integrals

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$\int \frac{du}{a^2 + u^2} = \frac{1}{a} \arctan \frac{u}{a} + C$$

$$\int \frac{du}{u\sqrt{u^2 - a^2}} = \frac{1}{a} \operatorname{arcsec} \frac{|u|}{a} + C$$