Mth133 – Calculus: Exam 4 Review

Note: This is not a complete list of topics – you should study your lecture notes and homework in addition to reviewing the items listed here.

1. Optimization

the general technique is this:

- a. Draw a diagram
- b. Label your diagram and identify all of the givens and unknown quantities.
- c. Assign some symbol for the quantity your optimizing and find an equation for it in terms of the other quantities. (i.e. *A* for area, *D* for distance, etc.)
- d. If necessary, eliminate all but one of the variables from this equation.
- e. Use our methods to find the absolute max or min.
 - (i.e. take the derivative and set it equal to zero.)
- 2. <u>Newton's Method</u>
 - a. first be sure your equation is some f(x) = 0

b.
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- 3. Differentials
 - a. dy = f'(x)dx
 - b. $f(x + \Delta x) \approx f(x) + dy$ (Use this to approximate values like 2.01² or $\sqrt{99.6}$.)
 - c. d* is used to approximate the error in *
- 4. Indefinite integrals

$$\int f(x)dx = F(x) + C$$
, where $F'(x) = f(x)$

- 5. Area under the curve
 - a. Area = $\lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$, where c_i is any point in the *i*th interval (we usually use right-endpoints)
 - b. To approximate the area, we can use a certain number of rectangles. Be prepared to use left-endpoints or right-endpoints