Mth133 - Calculus: Exam 1 Review

Note: This is not a complete list of topics – you should study your lecture notes and homework in addition to reviewing the items listed here.

- 1. prerequisite knowledge
 - a. solving polynomial and rational equations
 - b. solving polynomial and rational inequalities
 - c. evaluating trigonometric functions
- 2. using the limit definition
 - a. Given ε , find a δ , so that $|f(x) L| < \varepsilon$ whenever $0 < |x c| < \delta$.
- 3. evaluating limits
 - a. estimating numerically with a table of values
 - b. estimating graphically
 - c. calculating analytically
 - i. If f is a polynomial, rational, root, or trigonometric function, and c is in the domain of f, $\lim_{x\to c} f(x) = f(c)$.

ii. Squeeze Theorem
If
$$g(x) \le f(x) \le h(x)$$
 and $\lim_{x \to c} g(x) = L = \lim_{x \to c} h(x)$, then $\lim_{x \to c} f(x) = L$.
iii. $\lim_{x \to 0} \frac{\sin x}{x} = 1$ and $\lim_{x \to 0} \frac{1 - \cos x}{x} = 0$

- 4. If $f(c) = \frac{0}{0}$, the limit is indeterminate, and other techniques are necessary.
 - a. If f is a rational function, see if it can be factored.
 - b. If f has a radical, try multiplying by the conjugate.
 - c. If f is a complex fraction, simplify by multiplying the numerator and denominator by the LCD.
- 5. continuity

A function *f* is continuous at *c* if and only if $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = f(c)$.

- 6. Intermediate Value Theorem
- 7. one-sided limits
 - a. graphically
 - b. "numerically" Mentally considering a number slightly less than *c* if $x \rightarrow c^-$, or slightly greater than *c* if $x \rightarrow c^+$.

- 8. infinite limits
 - a. If $f(c) = \frac{a}{0}$, where $a \neq 0$, $\lim_{x \to c} f(x)$ does not exist. More specifically, the limit is an infinite limit. You then must determine whether the limit is ∞ or $-\infty$.
- 9. derivatives
 - a. know the definition

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

b. finding the equation of a tangent line

10. when does a function fail to be differentiable at a point?

