## Mth 120 – Statistics – **Practice Exam 1 Solutions**

1.

- a. quantitative
- b. qualitative
- c. quantitative
- d. qualitative
- e. quantitative

2.

- a. This could actually be argued either way.
- b. discrete
- c. continuous
- d. discrete
- e. continuous

3.

- a. The objective was to determine if adults *felt* it was worth going to war. (Note the distinction it is not trying to determine *if it was worth it.*)
- b. The population is not clear it is most likely *all US adults*.
- c. The sample is the 524 adults who were polled.

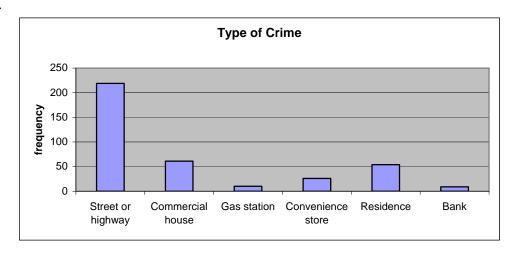
4.

- a. This is *stratified sampling* the different groups are the strata.
- b. This is a *convenience sample* only people who are interested and listening call in.
- c. This is *cluster sampling* the cartons are the clusters.

5.

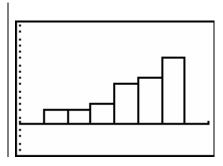
- a. the cholesterol level
- b. the experimental drug What is the treatment?
- c. completely randomized double blind (either answer would be acceptable)

6.


- a. about 22,000
- b. about 18%
- c. This graph is misleading because the different categories are not the same population. We should use relative frequencies instead.

7.

a.


|                   | Number of Offenses | Relative<br>Frequency<br>0.578 |  |
|-------------------|--------------------|--------------------------------|--|
| Type of Crime     | (in thousands)     |                                |  |
| Street or highway | 219                |                                |  |
| Commercial house  | 61                 | 0.161                          |  |
| Gas station       | 10                 | 0.026                          |  |
| Convenience store | 26                 | 0.069                          |  |
| Residence         | 54                 | 0.142                          |  |
| Bank              | 9                  | 0.024                          |  |

b.



8. There are two good choices for this example – you could do class widths of 10 or 5. Either width shows the grade separation, but a width of 5 better displays the distribution. I'll do this histogram with a width of 5. The picture is actually a screen shot of my calculator. Microsoft Excel's 'histogram' feature doesn't display the histogram correctly, though it can with a bit of tweaking.

| class | frequency |
|-------|-----------|
| 40-49 | 2         |
| 50-59 | 2         |
| 60-69 | 3         |
| 70-79 | 6         |
| 80-89 | 7         |
| 90-99 | 10        |
|       |           |
|       |           |

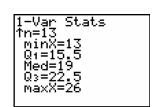


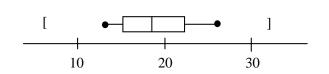
- 9. This distribution is slightly skewed right.
- 10.
- a. Since the distribution is reasonably symmetric, the *mean* would be best.
- b. Since this distribution is skewed, *median* would be best.
- c. This is qualitative data, so *mode* would be best.

11.

| Miles (per day) | Frequency | $x_i$ (mdpt) | $x_i f_i$ |
|-----------------|-----------|--------------|-----------|
| <br>1-2.9       | 3         | 2            | 6         |
| 3-4.9           | 30        | 4            | 120       |
| 5-6.9           | 17        | 6            | 102       |
| 7-8.9           | 21        | 8            | 168       |
| 9-10.9          | 7         | 10           | 70        |
|                 | 78        |              | 466       |

so 
$$\bar{x} \approx \frac{466}{78} \approx 5.97$$


12. 
$$gpa = \frac{4 \cdot 0 + 2 \cdot 1 + 3 \cdot 3 + 3 \cdot 0 + 4 \cdot 1}{4 + 2 + 3 + 3 + 4} = \frac{15}{16} = 0.9375 \approx 0.94$$


13. 
$$i = \left(\frac{30}{100}\right)(30+1) = \frac{930}{100} = 9.3 \text{ so } P_k = \frac{x_9 + x_{10}}{2} = \frac{63+65}{2} = 64$$

14. 
$$z = \frac{x - \mu}{\sigma} = \frac{112 - 100}{15} = 0.80$$

15.

a.





IQR = 
$$22.5 - 15.5 = 7$$
  
lower fence =  $15.5 - 1.5*7 = 5$   
upper fence =  $22.5 + 1.5*7 = 33$ 

b. We can see from the boxplot that there are no outliers – no values are outside of the fences.

3