Exam 3 Review

Note: This is not a complete list of topics - you should study your lecture notes and homework in addition to reviewing the items listed here.

- 1. The Normal Distribution
 - a. properties
 - b. area = probability
 - c. standard normal: $\mu = 0, \sigma = 1$
 - d. reading the table
 - e. z_{α} area to the right is α
- 2. Finding normal probabilities:
 - a. Draw a picture, showing the mean, std. dev., and the values/area being considered.
 - b. Calculate $Z = \frac{X \mu}{\sigma}$

b. Calculate $Z = \frac{X - \mu}{\sigma}$ c. Use the normal table to find the corresponding area/probability. Another option is using the calculator's normalcdf(capabilities.

- 3. Finding values of a normally distributed random variable
 - a. Draw a picture, illustrating the approximate location of the value.
 - b. Use the normal table to find the Z value corresponding to the desired area.
 - c. Find the corresponding X using $X = \mu + \sigma Z$.
- 4. Normal Probability Plots

If sample data are from a normally distributed population, the normal probability plot should be approximately linear.

- 5. Normal Approximation to the Binomial
 - a. If $np(1-p) \ge 10$, then the binomial random variable X is approximately normally distributed with $\mu = np$ and $\sigma = \sqrt{np(1-p)}$.
 - b. Don't forget the continuity correction! (see pg. 404 for details)
- 6. Distribution of the Sample Mean
 - a. The sampling distribution of \bar{x} will have mean $\mu_{\bar{x}} = \mu$ and std. dev. $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$.

(Note: This will still be true if *X* is not normally distributed but $n \ge 30$.)

b. Central Limit Theorem: Regardless of the shape of the distribution, the sampling distribution of \overline{x} becomes approximately normal as the sample size *n* increases.

7. Distribution of the Sample Proportion $\hat{p} = x/n$

a. If $n \le 0.05N$ and $np(1-p) \ge 10$, \hat{p} will be normally distributed.

b.
$$\mu_{\hat{p}} = p$$
 and $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$

8. Confidence intervals

statistic	conditions	$(1-\alpha) \cdot 100\%$ CI
$\mu \sigma$ known	normally distributed population or $n \ge 30$ with no outliers	$\overline{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$
$\mu \sigma$ unknown	normally distributed population or $n \ge 30$ with no outliers	$\overline{x} \pm t_{\alpha/2} \cdot \frac{s}{\sqrt{n}}$
р	$n \le 0.05N$ and $n\hat{p}(1-\hat{p}) \ge 10$	$\hat{p} \pm z_{\alpha/2} \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
σ^{2}	X is normally distributed	$\frac{(n-1)s^2}{\chi^2_{\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{\chi^2_{1-\alpha/2}}$
	$\mu \sigma$ known μ	μ σ knownnormally distributed population or $n \ge 30$ with no outliers μ σ unknownnormally distributed population or $n \ge 30$ with no outliers p $n \le 0.05N$ and $n \hat{p}(1-\hat{p}) \ge 10$

9. Sample size necessary

- a. Sample size necessary for a $(1 \alpha) \cdot 100\%$ CI about $\mu : n = \left(\frac{z_{\alpha/2} \cdot \sigma}{E}\right)^2$. b. Sample size necessary for a $(1 \alpha) \cdot 100\%$ CI about *p*:

i.
$$n = \hat{p}(1 - \hat{p})\left(\frac{z_{\alpha/2}}{E}\right)^2$$
 if \hat{p} is a prior estimate.
ii. $n = 0.25\left(\frac{z_{\alpha/2}}{E}\right)^2$ if no prior estimate is available.