<u>Verifying Identities Practice</u> – **Solutions** (My methods in italics.)

Note: There are certainly **other** ways to verify these.

1. $2 - \sec^2 \alpha = 1 - \tan^2 \alpha$ $= 1 - (\sec^2 \theta - 1)$	Work with the right-hand side. (left is just as easy)	4. $\cos x + \sin x \tan x = \sec x$	Work with the left-hand side.
$=1-\sec^2\theta+1$	Use the identity $\tan^2 \alpha + 1 + \cos^2 \alpha$	$=\cos x + \sin x \cdot \frac{\sin x}{\cos x}$	Write in terms of sine and cosine.
$= 2 - \sec^2 \theta$	$\tan \alpha + 1 = \sec \alpha$	$=\frac{\cos x}{1}\cdot\frac{\cos x}{\cos x}+\frac{\sin x}{1}\cdot\frac{\sin x}{\cos x}$	Find a common denominator.
2. $\frac{\sec\theta - 1}{1 - \cos\theta} = \sec\theta$	Work with the left-hand side.	$=\frac{\cos^2 x}{\cos x} + \frac{\sin^2 x}{\cos x}$	
$=\frac{\frac{1}{\cos\theta}-1}{1-\cos\theta}$	<i>Write everything in terms of sine and cosine.</i>	$=\frac{\cos^2 x + \sin^2 x}{\cos x}$	Duthannan identity
$=\frac{\frac{1}{\cos\theta}-1}{1-\cos\theta}\cdot\frac{\cos\theta}{\cos\theta}$	Multiply by $\cos x$ to clear fractions.	$= \frac{1}{\cos x}$ $= \sec x$	r yinagorean iaeniiiy.
$=\frac{1-\cos\theta}{(1-\cos\theta)\cos\theta}$	Reduce.	5. $\frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{\cot x + \cot y}{\cot x \cot y - 1}$	Work with the left-hand side. (right is just as easy)
$\cos \theta = \sec \theta$		$= \frac{\frac{1}{\cot x} + \frac{1}{\cot y}}{\frac{1}{\cot y}}$	Write in terms of cotangent.
3. $\sec x - \cos x = \sin x \tan x$	Work with the left-hand side.	$\frac{1-\frac{1}{\cot x} \frac{1}{\cot y}}{\left(\frac{1}{2}+\frac{1}{2}\right)}$	
$= \frac{1}{\cos x} - \cos x$ $= \frac{1}{\cos x} - \cos x \cdot \frac{\cos x}{\cos x}$	<i>Write everything in terms of sine and cosine.</i>	$=\frac{\left(\cot x + \cot y\right)}{\left(1 - \frac{1}{\cot x \cot y}\right)} \cdot \frac{\cot x \cot y}{\cot x \cot y}$	<i>Multiply by</i> cot <i>x</i> cot <i>y to clear fractions</i>
$=\frac{1}{\cos x} - \frac{\cos^2 x}{\cos x}$	Multiply by $\cos x$ to get a common denominator.	$=\frac{\cot y + \cot x}{\cot x \cot y - 1}$	
$=\frac{1-\cos x}{\cos x}$		$=\frac{\cot x + \cot y}{\cot x \cot y - 1}$	
$=\frac{\sin^2 x}{2}$	Use the Pythagorean Identity.		

 $=\frac{\sin x \sin x}{\sin x}$ $\cos x$

 $\cos x$

 $= \sin x \tan x$

6. $\cos(x+y)\cos(x-y) = \cos^2 x - \sin^2 y$	Work with the left-hand side.
$= (\cos x \cos y - \sin x \sin y)(\cos x \cos y + \sin x \sin y)$ $= \cos^2 x \cos^2 y - \sin^2 x \sin^2 y$	Use the identities for $\cos(x + y)$ and $\cos(x - y)$
$= \cos^{2} x (1 - \sin^{2} y) - (1 - \cos^{2} x) \sin^{2} y$	Lungs stuck hore for shout 15
$= \cos^{2} x - \sin^{2} y \cos^{2} x - \sin^{2} y + \sin^{2} y \cos^{2} x$	minutes. Use the
$=\cos^2 x - \sin^2 y$	Pythagorean identities manipulated – then simplify.

Note: Problems 7 and 8 are from section 5.5.

8. $(\cos x + \sin x)^2 = 1 + \sin 2x$ $= \cos^2 x + 2\cos x \sin x + \sin^2 x$ $= \sin^2 x + \cos^2 x + 2\sin x \cos x$ $= 1 + 2\sin x \cos x$ $= 1 + \sin 2x$ Work with the left-hand side.

Use the Pythagorean identity.