Mth 114 – Trigonometry – Practice Exam 4 – Part I

NOTE: This exam should not be taken as a complete list of possible problems. It is merely intended to be an example of the length and difficulty level of the regular exam. To best utilize it as a *practice* exam, give yourself 55 minutes with no distractions. Try to emulate the classroom environment as much as possible. <u>Calculators are NOT ALLOWED on this portion.</u>

1. Find the exact value of each real number *y*.

a.
$$y = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

b.
$$y = \tan^{-1}(-1)$$

c. $y = \sec^{-1} 2$

2. Find the degree measure of
$$\theta$$
 if $\theta = \arcsin\left(\frac{\sqrt{2}}{2}\right)$.

3. Find the exact value of $\sec\left(\sin^{-1}\left(-\frac{1}{5}\right)\right)$.

For problems 4-6, solve each equation for exact solutions over the interval $[0, 2\pi)$.

4. $3 \tan x - 1 = 2$

 $5. \quad 2\sin^2 x + \sin x = 1$

6. $2\sin 3x = 1$

For problems 7 and 8, solve each equation for solutions over the interval $[0^\circ, 360^\circ)$.

7. $2 \sec x + 1 = \sec x + 3$

8. $\sin\theta\cos\theta = \cos\theta$

9. Solve $y = \sin x - 2$ for x.

In problems 11 and 12, solve each equation exactly.

10. $4\pi + 4 \tan^{-1} y = \pi$

11.
$$\sin^{-1} x + \tan^{-1} \sqrt{3} = \frac{2\pi}{3}$$

Mth 114 – Trigonometry – Fall, 2004 – Practice Exam 4 – Part II

Calculators ARE ALLOWED on this portion.

12. Use a graphing calculator to find all solutions to the equation $\cos x = 0.25$ in the interval $[0, 2\pi)$.

13. Use a graphing calculator to find all solutions in the interval $[0, 2\pi)$ to the equation $x^2 - 2x + \sin x = 0$. Round any answers to 6 decimal places, if necessary.