Mth 114 – Trigonometry – **Practice Exam 3**

NOTE: This exam should not be taken as a complete list of possible problems. It is merely intended to be an example of the length and difficulty level of the regular exam. To best utilize it as a *practice* exam, give yourself 55 minutes with no distractions. Try to emulate the classroom environment as much as possible. **Calculators are NOT ALLOWED on this exam.**

Half-Angle Identities:	Product-to-Sum Identities:	Sum-to-Product Identities:
$\cos\frac{A}{2} = \pm\sqrt{\frac{1+\cos A}{2}}$	$\cos A \cos B = \frac{1}{2} \left[\cos(A+B) + \cos(A-B) \right]$ $\sin A \sin B = \frac{1}{2} \left[\cos(A-B) - \cos(A+B) \right]$	$\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
$\sin\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{2}}$	$\sin A \cos B = \frac{1}{2} \left[\sin(A+B) + \sin(A-B) \right]$ $\cos A \sin B = \frac{1}{2} \left[\sin(A+B) - \sin(A-B) \right]$	$\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
$\tan\frac{A}{2} = \pm\sqrt{\frac{1-\cos A}{1+\cos A}}$		$\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
$\tan\frac{A}{2} = \frac{\sin A}{1 + \cos A} = \frac{1 - \cos A}{\sin A}$		$\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$

1. Find sin s given $\cos s = \frac{3}{5}$ and s is in quadrant IV.

2. Find $\cos(s+t)$ given that $\sin s = \frac{2}{3}$ and $\sin t = -\frac{1}{3}$, s in quadrant II and t in quadrant IV.

3. Verify the following identities.

a.
$$\frac{\sin^2 \theta}{\cos \theta} = \sec \theta - \cos \theta$$

b.
$$\frac{1}{1-\sin\alpha} + \frac{1}{1+\sin\alpha} = 2\sec^2\alpha$$

c.
$$\frac{\sin(x-y)}{\sin y} + \frac{\cos(x-y)}{\cos y} = \frac{\sin x}{\sin y \cos y}$$

d.
$$\frac{2\cos 2\theta}{\sin 2\theta} = \cot \theta - \tan \theta$$

- 4. Use identities to find each exact value.
 - a. sin 75°

b.
$$\tan \frac{\pi}{12}$$

5. Find $\cos 2\theta$ given $\cos \theta = -\frac{12}{13}$.

6. Write the expression $\sin 5x \cos 3x$ as a sum or difference of trigonometric functions.

7. Find $\cos \frac{\theta}{2}$, given $\sin \theta = -\frac{1}{5}$, with $180^{\circ} < \theta < 270^{\circ}$.