Ch. 3 & 4 Review

Note: This is not a complete list of topics – you should study your lecture notes and homework in addition to reviewing the items listed here.

1. radians

a. given degrees,
$$x^{\circ} = x^{\circ} \cdot \frac{\pi}{180^{\circ}}$$
 rad

b. given radians,
$$x = x \cdot \frac{180^{\circ}}{\pi}$$

2. applications of radians (all angles must be in radians)

a. arc length:
$$s = r \cdot \theta$$

b. area of a sector:
$$A = \frac{1}{2}r^2\theta$$

c. angular velocity:
$$\omega = \frac{\theta}{t}$$

d. linear velocity:
$$v = \frac{s}{t} = r\omega$$

3. unit circle

4. graphs of the sine and cosine functions

a.
$$y = c + a\cos[b(x-d)]$$
 and $y = c + a\sin[b(x-d)]$

i.
$$amplitude = a$$

ii. period =
$$\frac{2\pi}{b}$$

iii.
$$vertical shift = c$$

iv.
$$horizontal shift = d$$

- 5. graphs of the other trigonometric functions
 - a. $y = c + a \csc[b(x-d)] =$ use $y = c + a \sin[b(x-d)]$ as a 'guide'
 - b. $y = c + a \operatorname{sec}[b(x-d)] = \operatorname{use} y = c + a \cos[b(x-d)]$ as a 'guide'
 - c. $y = c + a \tan[b(x-d)]$
 - i. no amplitude, but a stretches the graph vertically
 - ii. period = $\frac{\pi}{h}$
 - iii. c and d act as vertical and horizontal shifts, respectively
 - iv. one period: $-\frac{\pi}{2} < b(x-d) < \frac{\pi}{2}$
 - v. vertical asymptotes
 - d. $y = c + a \cot[b(x-d)]$
 - i. no amplitude, but a stretches the graph vertically
 - ii. period = $\frac{\pi}{h}$
 - iii. c and d act as vertical and horizontal shifts, respectively
 - iv. one period: $0 < b(x-d) < \pi$
 - v. vertical asymptotes