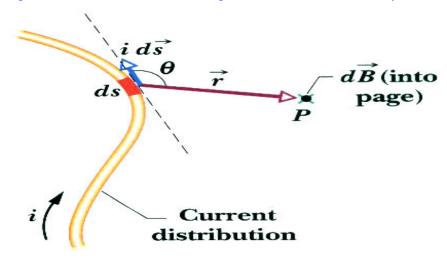
Magnetic Fields Due to Currents

In the early 1820^s, the magnetic deflection of a compass needle in close proximity to a current carrying wire was observed. An empirical result, known as the **Biot-Savart Law**, giving the magnitude and direction of the magnetic field followed shortly afterwards.

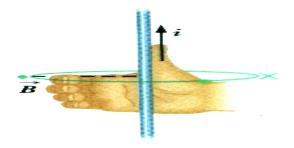


Here, \overrightarrow{ids} is a differential current-length element producing a differential magnetic field \overrightarrow{dB} at location P. Summing over all such current-length elements will give the magnetic field \overrightarrow{B} using superposition. The Biot-Savart Law for the magnetic field is:

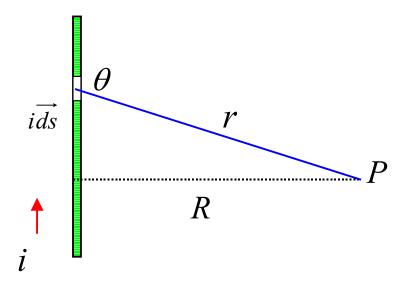
$$\overrightarrow{dB} = \frac{\mu_0}{4\pi} \frac{i\overrightarrow{ds} \times \overrightarrow{r}}{r^3} \qquad |\overrightarrow{dB}| = \frac{\mu_0}{4\pi} \frac{idsSin(\theta)}{r^2}$$

$$\mu_0 = Permeability_of_Free_Space = 4\pi \times 10^{-7} \frac{Tm}{A}$$

Note $rac{1}{r^2}$ dependence and RHR direction into the page in the above figure. Placing the thumb along the current-length direction, then the fingers curl into the field direction.



E.g., Infinite Current Carrying Wire



$$\overrightarrow{B} = 2 \times \frac{\mu_0}{4\pi} \int_0^\infty i ds \, \frac{Sin(\theta)}{r^2}$$
 Into the page at **P.**

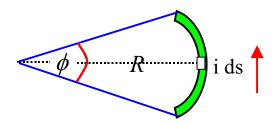
Using
$$Sin(\theta) = \frac{R}{\sqrt{R^2 + s^2}}$$

$$\vec{B} = \frac{\mu_0 i}{2\pi} \int_0^\infty \frac{R}{\left(R^2 + s^2\right)^{3/2}} ds$$
 Into the page at **P**.

$$B = \frac{\mu_0 i}{2\pi} \frac{Rs}{R^2 (s^2 + R^2)^{1/2}} \bigg|_0^{\infty} = \frac{\mu_0 i}{2\pi R}$$

For a semi-infinite wire then,
$$B=rac{\mu_0 i}{4\pi R}$$

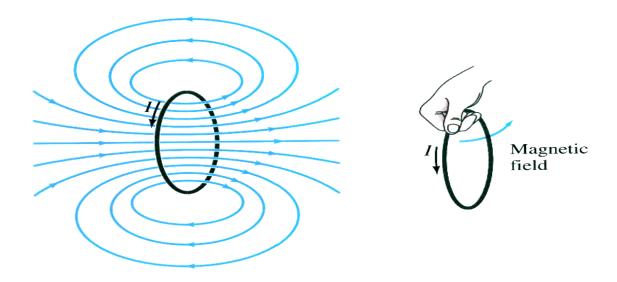
E.g., Arc Length of Current Carrying Wire



Here the variable heta in Biot-Savart is always 90^{0}

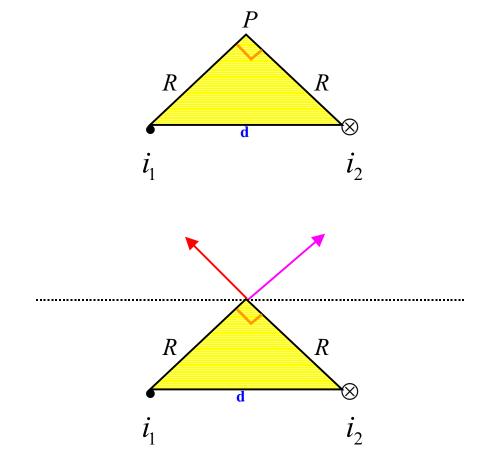
$$B = \frac{\mu_0}{4\pi} \int_0^{\phi} i \frac{Rd\phi}{R^2} = \frac{\mu_0 i \phi}{4\pi R}$$

$$\overrightarrow{B} = 2\pi \times \frac{\mu_0 i}{4\pi R} = \frac{\mu_0 i}{2R}$$
 For a full loop of wire.



E.g., A Superposition Problem

Given the geometry shown, find the magnetic field at point $\,P\,$ due to $\,i_1$ and $\,i_2$



$$\mid B_2 \mid = \frac{\mu_0 i_2}{2\pi R}$$

X and Y components of each of these vectors may be found from the geometry and a superposition formed.

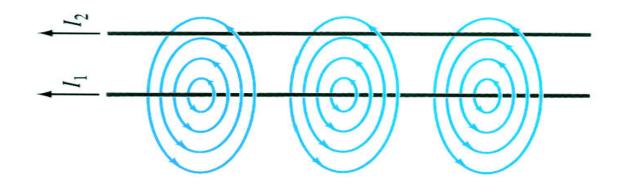
$$R = dCos(45^{\circ})$$
 And the answer is in terms of **d**.

Force between Two Parallel Current Carrying Wires

For moving charges in a magnetic field, there exists a force: $\overrightarrow{F} = \overrightarrow{qv} imes \overrightarrow{B}$

The force on a current carrying element in a magnetic field is: $\overrightarrow{dF} = i\overrightarrow{dl} \times \overrightarrow{B}$

If we have then two parallel current-carrying wires as shown, then the field established by current 1 at the location of wire 2 results in a force on wire 2 and vice-versa.



For a perpendicular separation distance of d, the field from current 1 at a distance d is:

$$\mid B_1 \mid = \frac{\mu_0 I_1}{2\pi d}$$

Since the direction of this field is at 90 degrees to I_2I_2 the force on wire 2 is:

$$F_{21} = \frac{\mu_0 I_1 I_2 L}{2\pi d}$$
 Consideration of the cross products and the RHR indicates that:

Parallel currents in the same direction \rightarrow an attractive force between the two wires.

Parallel currents in opposing directions \Rightarrow a repulsive force between the two wires.

From this force also comes the SI base quantity the **Ampere**. The ampere is defined as

that amount of current, the same in each wire, yielding $\frac{F_{21}}{L} = 2x 10^{-7} \, N \, / \, m$

at a distance of 1-meter. Note from this $~\mu_{0}$ has the value $~\mu_{0}=4\pi\times10^{-7}\,\frac{N}{A^{2}}$

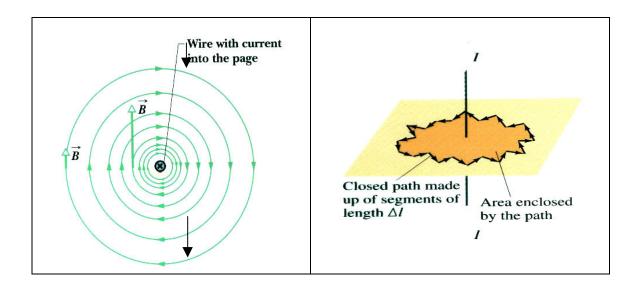
Ampere's Law

<u>Andre' Ampere</u>, again in the early 1820^s, discovered a specific connection between <u>steady currents</u> and the resulting magnetic field, which is particularly suited to current distributions possessing a high degree of symmetry.

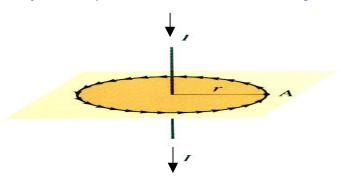
The result known as Ampere's Law considers a closed <u>Amperian loop</u> path integral about the current distribution and relates the evaluated integral to the <u>arithmetic sum</u> of all currents enclosed within the loop:

$$\oint \vec{B} \cdot \vec{ds} = \mu_0 i_{enclosed}$$

For example, recall the magnetic field of a long straight current-carrying wire looks like



The dot product $B \cdot ds$ means that field components perpendicular to the path differential element do not contribute to the integral. For a tractable integrand, the path might be more judiciously chosen in accordance with the problem symmetry as circular.



By convention, the <u>direction chosen for the path integration</u> determines the arithmetic sign +/- of the current contributions to the RHS of Ampere's Law.

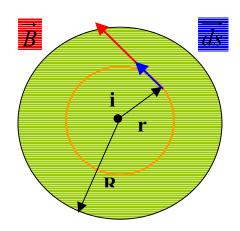
In the above example, a counterclockwise path integration \rightarrow positive current will be in the direction of ones thumb after curling the fingers of the right hand in the direction of integration. The current shown, therefore, will give a minus current in Ampere's Law.

$$\oint \overrightarrow{B} \cdot \overrightarrow{ds} = -\mu_0 I$$

Here if we solve for the field,
$$B = \frac{+ \mu_0 I}{2\pi R}$$
 since $\vec{B} \& \vec{ds}$ are at 180 degrees.

E.g., Magnetic Field inside a Long Straight Wire

The magnetic field within a wire carrying a current \dot{l} may be evaluated with Ampere's Law by determining $\dot{l}_{enclosed}$ at the interior point of evaluation.

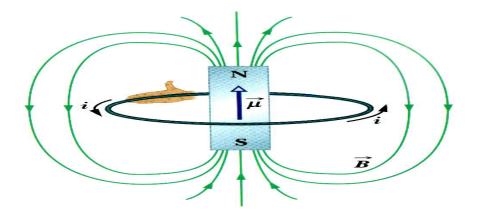


$$i_{enclosed} = i * \frac{\pi r^2}{\pi R^2}$$
 \Rightarrow $B = \frac{1}{2\pi r} * \mu_0 i * \frac{\pi r^2}{\pi R^2}$

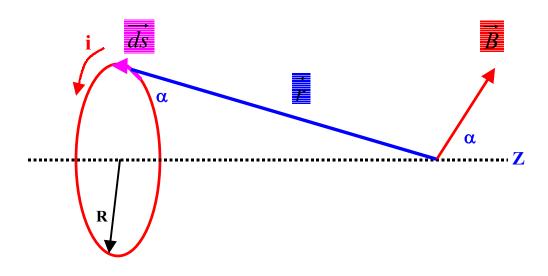
$$B_{Inside} = \mu_0 i \frac{r}{2\pi R^2}$$

Current Carrying Coil as a Magnetic Dipole

The magnetic field due to a current loop is similar to that from a bar magnet and forms a magnetic dipole moment as shown.



The field on-axis due to the current loop may be evaluated using the Biot-Savart Law



Components of $\overline{\boldsymbol{B}}$ that are in the vertical cancel by symmetry.

The field parallel to
$$\mathbf{Z}$$
 is $|\overrightarrow{dB}_{//}| = dBCos(\alpha)$

From Biot-Savart,
$$dB = \frac{\mu_0 i}{4\pi} \frac{dsSin(90)}{r^2}$$

From the figure,
$$Cos(\alpha) = \frac{R}{\sqrt{R^2 + z^2}}$$

$$|\vec{B}| = \int dB_{//} = \frac{\mu_0 iR}{4\pi (R^2 + z^2)^{3/2}} \int_0^{2\pi} ds$$

$$|\vec{B}| = \frac{\mu_0 i R^2}{2(R^2 + z^2)^{3/2}}$$

Note the Z = 0 (center of loop) result and the large Z limit $\propto Z^{-3}$

In this large **Z** limit and for **N** loops of area $A=\pi R^2$

$$\overrightarrow{B} = \frac{\mu_0 NiA}{2\pi z^3} = \frac{\mu_0}{2\pi z^3} |\overrightarrow{\mu}|$$

$$\vec{\mu} = NiA$$
 RHR

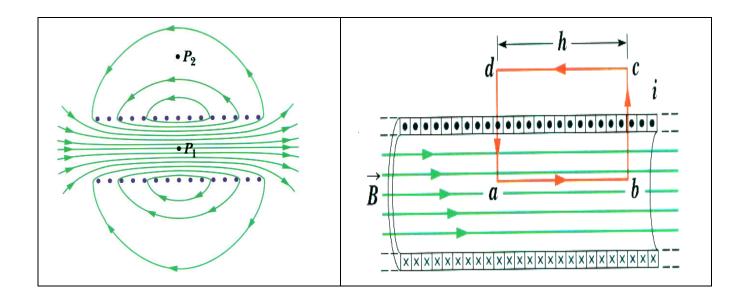
Current loops therefore appear as magnetic dipoles at large ${f z}$ and $\mu=NiA$

Solenoids

A <u>solenoid</u> consists of N tightly packed current carrying loops in a linear configuration. The magnetic field is a superposition of the fields from each individual current loop.

<u>Ideal solenoids</u> have an infinite # of loops, uniform field inside, and zero field outside.

Application of Ampere's Law to this problem determines the on-axis magnetic field as:



$$\oint \overrightarrow{B} \cdot \overrightarrow{ds} = \int_{a}^{b} \overrightarrow{B} \cdot \overrightarrow{ds} + \int_{b}^{c} \overrightarrow{B} \cdot \overrightarrow{ds} + \int_{c}^{d} \overrightarrow{B} \cdot \overrightarrow{ds} + \int_{d}^{a} \overrightarrow{B} \cdot \overrightarrow{ds} = \mu_{0} i_{enclosed}$$

$$i_{enclosed} = i * nh$$
 $nh = \frac{number_of_turns}{length} * length$

The only contribution to the path integration is along $a \rightarrow b$.

$$Bh = \mu_0 inh$$
 \rightarrow $B_{Ideal_Solenoid} = \mu_0 ni$

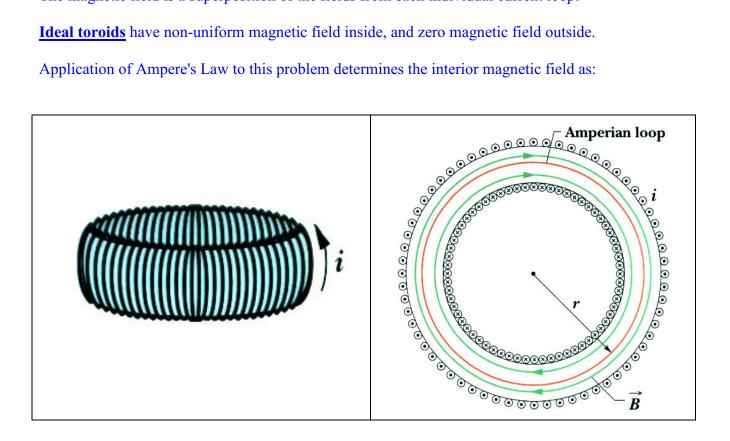
Toroids

A **toroid** consists of N tightly packed current carrying loops in a doughnut configuration.

The magnetic field is a superposition of the fields from each individual current loop.

Ideal toroids have non-uniform magnetic field inside, and zero magnetic field outside.

Application of Ampere's Law to this problem determines the interior magnetic field as:



$$\oint \vec{B} \cdot \vec{ds} = \mu_0 Ni \qquad N = number_of_turns$$

$$B*2\pi r = \mu_0 Ni$$

$$B_{Toroid} = \frac{\mu_0 Ni}{2\pi r}$$
 Note this is not constant over the toroid cross-section.

Magnetic Materials

Three types of magnetic materials categorized according to their magnetic nature are:

- 1) Diamagnetic
- 2) Paramagnetic
- 3) Ferromagnetic

Beginning with a definition of <u>magnetization</u> M for a material placed in an external magnetic field \overrightarrow{B}_0 , evaluate the material response to this external field.

$$\overrightarrow{M} = N\overrightarrow{\mu}/V = density _of _magnetic _dipole _moments$$

$$\vec{\mu} = magnetic_dipole_moment_for_1_atom$$

Units of
$$\overrightarrow{M}$$
 $A \cdot m^2 / m^3 = A / m$

The <u>net magnetic field</u> within the material is then a superposition of $\mu_0 \overrightarrow{M}$ with \overrightarrow{B}_0

$$\vec{B} = \vec{B}_0 + \mu_0 \vec{M} = \vec{B}_0 + \chi_m \vec{B}_0$$

$$\chi_m = magnetic_susceptibility$$

$$\mu = \mu_0 (1 + \chi_m)$$
 $\mu = magnetic_permeability$

In the vacuum,
$$\mu = \mu_0$$
 $\chi_m = 0$

Diamagnetic case,

$$\mu < \mu_0$$
 $\chi_m < 0$ \overrightarrow{M} opposite \overrightarrow{B}_0

Paramagnetic case,

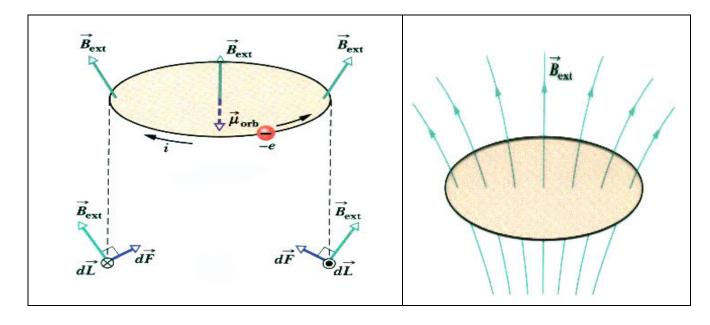
$$\mu > \mu_0$$
 $\chi_m > 0$ \overrightarrow{M} aligned with $\overrightarrow{B_0}$

Ferromagnetic case, $\mu >> \mu_0$ $\chi_m >> 1$

Diamagnetism

Materials in which each atom has a zero net electronic magnetic dipole moment throughout the volume are diamagnetic.

Placing these materials in a non-uniform external magnetic field will induce oppositely directed magnetic dipole moments in the material and result in a small repulsive force away from high external field regions.



In diamagnetic materials $K_m = \mu/\mu_0 = relative_permeability$ is approximately unity implying the response of the material to an external field is small and does not persist as $\overrightarrow{B}_0 \longrightarrow 0$

Typical diamagnetic magnetic susceptibilities $\chi_m = K_m - 1_{
m are\ on\ the\ order}$ of 10^{-6}

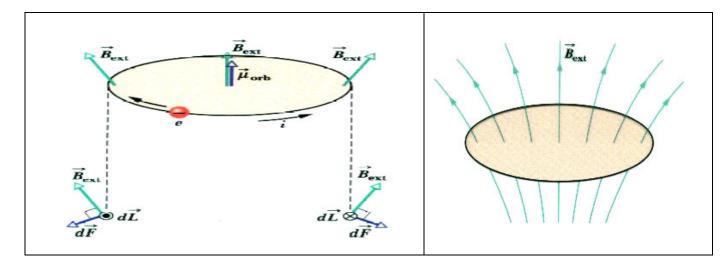
Some diamagnetic substances are:

- Bismuth
- **Copper**
- > Lead
- Silicon
- Diamond

Paramagnetism

Materials in which each atom has a net magnetic dipole moment, but these moments are not aligned largely throughout the volume are paramagnetic.

Placing these materials in a non-uniform external magnetic field will align the preexisting magnetic dipole moments with the external field direction and result in a small attractive force toward high external field regions.



In paramagnetic materials $K_m = \mu/\mu_0 = relative_permeability$ is approx. unity implying the response of the material to an external field is small and does not persist as $\overrightarrow{B}_0 \to 0$

Typical paramagnetic <u>magnetic susceptibilities</u> $\chi_m = K_m - 1$ are on the order of 10^{-5}

Some paramagnetic substances are:

- > Aluminum
- Calcium
- Oxygen (STP)
- > Platinum
- > Tungsten

Paramagnetic materials have a magnetization proportional to the applied external field

according to Curie's Law: Holding true for $\mu B_0/kT$ << 1

$$M = C \frac{B_0}{T}$$
 $C = Curie's _Const.$ $T _in _Kelvin$

Ferromagnetism

Materials in which each atom has a net magnetic dipole moment, and alignment randomizing thermal effects are secondary to spin-spin ("exchange coupling") magnetic dipole moment aligning interactions, are ferromagnetic.

In ferromagnetic materials a <u>magnetic domain</u> structure exist where the alignment of magnetic dipole moments within any given **domain boundary** is largely coherent.

Each domain region has a large net magnetic dipole moment vector that orients independently of neighboring domains such that bulk samples aren't initially magnetized.

Placing these materials in a non-uniform external magnetic field will either align **domain** magnetic dipole moments with the external field direction or grow in size domains with

moments collinear to $B_{
m 0}$. An attractive force toward high external field regions results.

For a ferromagnet, $\chi_m >> 1$ implies the response of the material to external fields

is large and persists as $B_0 \rightarrow 0$ \rightarrow permanent magnetization and hysteresis

Typical ferromagnetic magnetic susceptibilities $\chi_m = K_m - 1$ are the order of 10^3

Some ferromagnetic substances are:

- ➤ Magnetic Iron
- Nickel
- > Cobalt
- Permalloy (Ni 78.5%; Fe 21.5%)
- Mumetal (Ni 75%; Fe 18%; Cu 5%; Cr 2%)

Large χ_m implies a small external applied magnetic field will produce a large magnetic field within the ferromagnetic material

Ferromagnetism is lost if the sample temperature is raised above the **Curie Temperature**

At this point, a ferromagnetic material becomes paramagnetic and permanent magnetism will disappear.

For iron,
$$T_C = 770^0 C$$