
Electric Potential Energy and Electric Potential  

 

A scalar field, involving magnitudes only, is often easier to work with when compared to 

a vector field. For electric fields not having to begin with vector issues would be nice. To 

arrange this a scalar field is defined from which the electric field may be derived. 

 

Recall from gravitation that the gravitational force is a conservative force, which implies 

the following attributes for the gravitational force: 

 

 

I. A potential energy term may be deduced from which energy associated 

with the charges spatial configuration (gravitational charge = mass) 

can be evaluated. 

 

II. The work done by the field as a charge is moved in a closed loop 

within that field is zero, and the work done on the charge in moving 

along an arbitrary path depends only on the beginning and ending points. 

 

III. Path independence is 
0 dlF

 A line integral giving the 

work done by the field during 'charge' motion in a closed loop.   

 

 

A similar 2
1

r dependence in the electrostatic force means that it is also 

conservative and the above results hold for the electrostatic force. 

 

 

Given the force, a potential energy term derives from  UF   

 

 

When F is radially dependent only, then    
r

r

U
Eq ˆ






 

 

 

Electric field is therefore available via the scalar electric potential energy U . 
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The electric potential difference is measured in volts, (A. Volta 1745 - 1827)  

 

 

 

What is electric potential energy? 

 

Potential energy is the energy associated with a particular physical configuration.  

 

With the gravitational force, if mass is elevated to a height above ground level then this 

is a configuration with more potential energy. 

 

The analogous electrostatic case must somehow involve electric charges being 'elevated' 

. 

 

Consider two electric dipole configurations in an external electric field: 
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Having agreed that given the E was established by a line of + charges, then the 

1st configuration (+q 'closest' to + charges of E ) has more 'potential 

energy' as follows: 

 



When a mass is released from some height, a net force from gravity on the object 

accelerates the mass transferring its potential energy into kinetic energy. 

 

 

Fixing the center of the dipole as an axis of rotation, any small perturbation away from 

horizontal on the top dipole leads to a transition into the more stable 2nd configuration. 

 

 

The 2nd
 configuration corresponds to the minimum electric potential energy (mass on 

the ground) and the 1st
 configuration is at higher potential energy. 

 

 

 

Electric potential energy is energy of a charged object in an external electric field. 

 

 

If we 'release' the charge, then work done by the electric field on the charge: 

 

 

UW fieldthebyDone ___  

 

 

For the dipole, as the 1st configuration moves to 'ground' PEU 2  

and the field does positive work as the dipole 'falls' into the 2nd
 configuration. 

 

 

 

Electric Potential 

 

From 
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 the charge on the test object is  

 

 

removed from the problem when electric potential is defined.  

 

 

That is, V represents the potential energy per unit charge due the electric field: 



The electric potential is a property of an existing electric field, regardless of whether 

or not a charged object is placed in the field. 

 

 

Dimensionally, V has SI units 
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1Volt = 1Joule/Coulomb and electric fields have units of Volts/Meter. 

 

 

 

The connection to a battery or electric outlets as sources of electricity (voltage) is that the 

voltage supplied is the result of a charge separation that can establish an electric field 

which may be used to produce 'currents', i.e., plug-it-in. 

 

 

Once we have the electric potential in a system containing electric charges (discrete or  

 

continuous), we can use 
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to obtain the electric field.  

 

 

The field-mapping laboratory is an example where the field was deduced using a set of 

equipotential surfaces. Electric field direction is perpendicular to equipotentials. 

 

 

 

Electric Potential of a Point Charge 

 

As in the case of gravity we take electric potential energy to be zero at r = : 

Then the electric potential at a location R from the point charge may be found: 
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For a +Q establishing the electric field, V is a positive scalar. 

For a -Q establishing the electric field, V is a negative scalar. 

 

 

For a system of discrete charges: 
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Once a method for calculating electric field from electric potential is known, calculating 

the electric potential and deriving an electric field is much easier then doing the vector 

algebra problem associated with a superposition of electric fields from each charge. 

 

 

Electric Potential from a Dipole 
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For r >> d the binomial expansion of these two terms gives: (1+x)n ~ 1+nx 
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And the product r-r+ is just r2  
 The resulting potential from the dipole is 
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Potential of Continuous Charge Distributions 

 

For elements of differential charge within the distribution, integrate to obtain the electric 

potential as follows: 
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Electric potential produced by a finite length of charge with a charge per unit length 

q/L 
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From the figure,  x = d*Tan()  dx = d*(Sec2)d



The radical has   x2+d2  = d2*(1+Tan2()) = d2*(Sec2()) 

+ + + + + + + + + + + + + + + + + + +   
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On-Axis Electric Potential from a Charged Disk 
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          Note the asymptotic limits for the variable Z. 

 

 

 

Calculating Electric Fields from Electric Potentials 

 

Starting from the definition of electric potential we can differentiate on both sides: 
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Recall the force is deducible from the potential energy as UF   

 

 

The gradient of the electric potential gives the electric field: 
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Charged Disk Potential Is  
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Electric Potential Energy of a System of Point Charges 

 

Given one charge produces an electric potential r
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Then the work done by an external agent in bringing another charge 2q
 into this 

region from infinity is minus the work done by the existing electric field or U  
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At this point the new electric potential is 
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Now the work done by an external agent in bringing another charge 3q
 into this 

region from infinity is minus the work done by the new electric field or U  
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The new electric potential is then 
3

3

2

2

1

1
3

r

kq

r

kq

r

kq
V 

 

 

 

Subsequent iterations lead to the conclusion that the assembly of a group of n point 

electric charges in a finite region of space requires an amount of work done U  
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The electric potential energy of a system of point charges is equal to the work 

needed to assemble the configuration, all charges initially an infinite distance apart. 

 

 

 

 

 

Electric Potential of a Charged Isolated Conductor 

 

From the definition of electric potential and the condition of electrostatics, general 

properties for a charged isolated conductors may be deduced: 
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Zero current requires 0E inside the conductor since free electrons 

otherwise flow. 

 

 

Gauss' Law then implies that all excess charge on the conductor resides on its 

surface. 

 

 

0E   the surface of a conductor is an equipotential or 0V  

 

 

0V Implies 0dsE
 electric field is perpendicular at 

the conductor surface. 

 

Non-uniform conductors with sharp edges have higher E  in these areas. 

 

 

In a static external field, charges on a conductor redistribute to maintain 

0E  inside: 

 

 
 


