#### **Electric Field Flux & Gauss' Law**

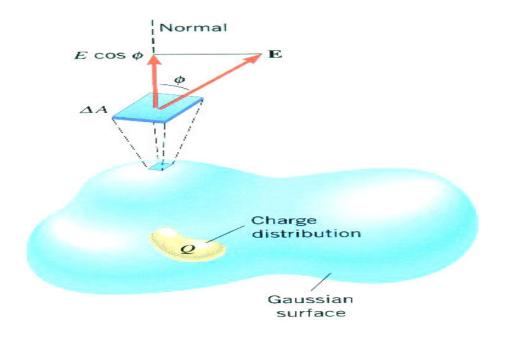
Given a charge distribution with an associated electric field, an often-convenient method of determining the field is by examination of electric field lines near the distribution. This approach is most effective if a high degree of **geometric symmetry** exist within the charge distribution.

If we choose a hypothetical closed surface ("<u>Gaussian Surface</u>") in which to <u>enclose</u> the symmetric charge distribution, then by evaluating the <u>flux</u> of the electric field lines either into or out of the enclosed region, the associated electric field is found using <u>Gauss' Law</u>

1) The flux of any set of field lines across an arbitrary surface area corresponds to the number of field lines passing through this surface at **normal** incidence.

$$\Phi = \int \vec{E} \cdot \hat{n} dA$$

The dot product assures normality and the integration sums over all field contributions. Field lines 'entering' {crossing A anti-parallel to  $\hat{n}$  } produce 'negative' flux and field lines 'leaving' {crossing A parallel to  $\hat{n}$  } correspond to 'positive' flux.



Integration over a <u>closed surface</u>, preferably one with symmetry such that integration is tractable, gives an integrated flux that is directly proportional to the charge enclosed by the surface:

The net field passing through a surface area element  $\,dA\,_{
m that}$  is also perpendicular to

the normal of the surface area element is  $E_{\perp}=ECos(\phi)$ 

The differential flux element is  $d\Phi = \overrightarrow{E} \bullet \hat{n} dA$ 

Integrating this over a closed surface gives the net electric field flux into or out of the region enclosed as:

$$\Phi = \oint \vec{E} \bullet \hat{n} dA$$

Evaluating this quantity for a **point charge** enclosed in a **gaussian sphere**, we find that since the electric field is uniform over the sphere surface the integration is simplified:

$$\Phi = \oint \vec{E} \bullet \hat{n} dA = E \oint dA = E 4\pi r^2$$

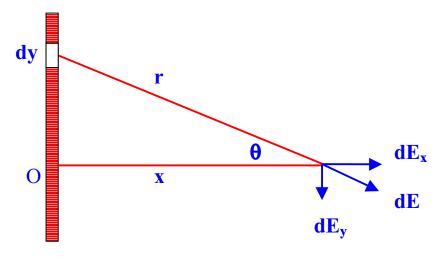
From which

$$E = \frac{q}{4\varepsilon_0 \pi r^2}$$

And therefore, 
$$\Phi = \oint \stackrel{\rightarrow}{E} \bullet \hat{n} dA = \frac{q_{enclosed}}{\mathcal{E}_0}$$

# **Example**

Recall the electric field produced by an infinite length of charge with linear charge density  $\lambda$  was:



$$dE = \frac{kdQ}{r^2} = k\frac{\lambda dy}{r^2} = k\frac{\lambda dy}{x^2 + y^2}$$

$$E = E_x = \int dE * Cos(\theta) = k\lambda \int Cos(\theta) \frac{dy}{x^2 + y^2}$$

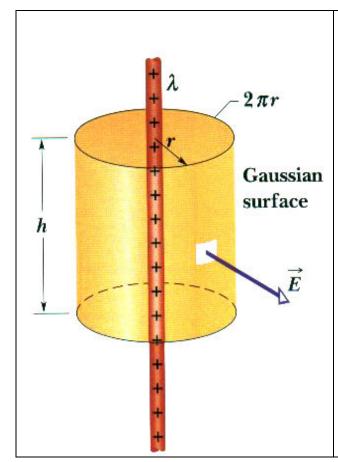
From the figure 
$$y = x*Tan(\theta) \rightarrow dy = x*(Sec^2\theta)d\theta$$

The denominator is 
$$x^2+y^2 = x^2*(1+Tan^2(\theta)) = x^2*(Sec^2(\theta))$$

$$E = k\lambda \int Cos(\theta) \frac{dy}{x^2 + y^2} = \frac{k\lambda}{x} \int_{-\pi/2}^{\pi/2} Cos(\theta) d\theta = \frac{2k\lambda}{x}$$

## Using Gauss' Law for an infinite line of charge is considerably easier as follows:

$$\oint \vec{E} \cdot \hat{n} dA = \frac{q_{enclosed}}{\mathcal{E}_0}$$



Since the field is uniform on the cylindrical surface and everywhere normal to the surface area, the electric field may be factored from the integrand:

$$E \oint dA = \frac{q_{enclosed}}{\varepsilon_0}$$

Leading to:

$$E2\pi rh = \frac{\lambda h}{\varepsilon_0}$$

$$E = \frac{2k\lambda}{r}$$

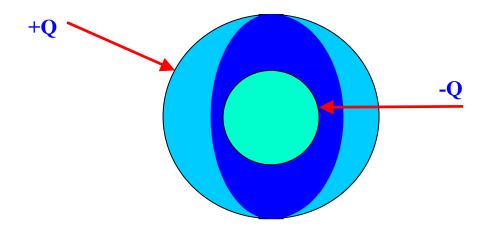
$$E = 2 k \lambda / r$$

## **Example: problem with spherical symmetry:**

Consider the two concentric conducting shells with charge as shown:

The electric field outside the outer shell is zero by Gauss' Law.

For the location inside the  $+\mathbf{Q}$  shell, but outside the  $-\mathbf{Q}$  shell, Gauss' Law has



$$\vec{E} = \frac{-Q}{4\pi\varepsilon_0 r^2} \qquad radially\_inward$$

Inside the  $-\mathbf{Q}$  shell, the field is also zero by Gauss' Law.

## **Shell Theorems**

A conducting  $\underline{Shell}$  of uniform  $\sigma$  attracts q outside as if all charge were located at the shell center.

A conducting **Shell** of uniform  $\sigma$  has no effect on charges within the shell.

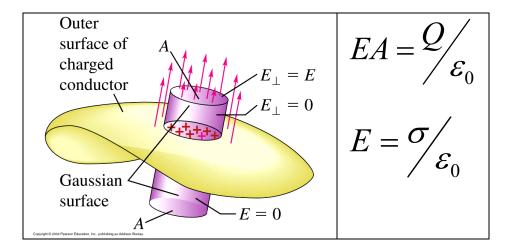
## **Charged Isolated Conductors**

**Charged** → Excess of charge was added or removed from the object. (Usually electrons)

**Isolated** → No other charge sources or sinks in the region. (Not grounded in particular)

**Conductors** The objects electrons are free to move when an electric field is applied.

- I. E Is identically zero inside a conductor since otherwise currents would flow continuously which is not the purview of electrostatics.
- II. Excess of charge must reside **on** the conductor surface. Since the electric field is zero in the conductor, work Gauss' Law backwards to conclude that there must be **zero charge inside** the conductor.
- III. Non-spherically shaped conductors have non-uniform charge densities on their surface and electric field values are highest near corners and edges.
- IV. E At the outside surface of a conductor is <u>perpendicular</u> to the conductor surface. Any transverse field would establish currents within the conductor.
- v.  $\overrightarrow{E}$  at the surface of a charged conductor is  $\overleftarrow{\mathcal{E}_0}$  by Gauss' Law:



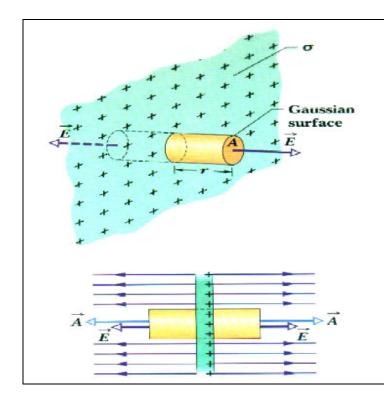
When a **conducting sheet** is carrying an excess of electric charge, the field in the conductor must be zero.

How is the result changed if the sheet is an **insulator** or **dielectric** material?

#### VS. **Conducting sheet of material** Non-conducting sheet of material.

No longer constrained to have zero electric field in the insulating material, Gauss'

Law gives the  $E\,$  at the non-conducting surfaces:



For a **non-conducting** sheet of material with an excess of electric charge,

Gauss' Law is:

$$\oint \vec{E} \cdot \hat{n} dA = \frac{q_{enclosed}}{\varepsilon_0}$$

$$EA + EA = \frac{q}{\varepsilon_0}$$

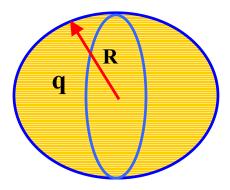
$$E = \frac{\sigma}{2\varepsilon_0}$$

$$EA + EA = q / \varepsilon_0$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

**Non-conducting Sphere of Uniform Charge Density** 

$$\rho = \sqrt{\frac{q}{4} \pi R^3} = const$$



For radii less than **R**, Gauss' Law gives

$$\oint \vec{E} \cdot \hat{n} dA = \frac{q_{enclosed}}{\varepsilon_0} = \frac{1}{\varepsilon_0} * \frac{\frac{4}{3} \pi r^3}{\frac{4}{3} \pi R^3} q = \frac{qr^3}{\varepsilon_0 R^3}$$

The electric field at points within the sphere is then:

$$\overrightarrow{E} = \frac{qr}{4\pi\varepsilon_0 R^3} \qquad radially \quad directed$$

For observation points of radius greater than R,

$$\oint \vec{E} \cdot \hat{n} dA = \frac{q_{enclosed}}{\varepsilon_0} = \frac{1}{\varepsilon_0} * \frac{4}{3} \pi R^3 \rho$$

And the electric field:

$$\vec{E} = \frac{q_{enclosed}}{4\pi\varepsilon_0 r^2} \qquad radial \qquad \vec{E} = \frac{\rho R^3}{3\varepsilon_0 r^2}$$