Alternating Current and AC Circuits

For a sinusoidal oscillating voltage, the current in a circuit will be alternating current.

AC current / voltage transmissions have the advantage of not being as costly in terms of

2
dissipative resistive loss. Since power loss is P=IV=I°R and the average AC

power includes averaging over a Sine squared function that gives a factor of %

In addition, AC transmission at high voltage (~100's kV) and low current is possible
since transforming high voltages with step-down transformers for consumer use is easier
with AC. This limits resistive loss.

V =V,Cos(at) Where %ﬂ =60Hz
| =1,Cos(wt)

V, and |,

Are Peak values of the voltage and current.

P =RI,*Sin“wt =% 1,°R

Measured at the wall with a DVM are the RMS voltage and current:
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Transformers

Transformers are used to increase or decrease voltages to an appropriate value for a given
application.

Primary and secondary coils with differing numbers of turns are flux-linked such that
voltages may be either stepped-up or stepped-down:

Secondary
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For 100% efficient transformers, power input equals power output. If the voltage is
stepped-up the current in the secondary must decrease and vice-versa.

|1V1 — |2V2



AC and LRC Circuit Elements

Since any input signal may be Fourier analyzed into a series summation of sine and
cosine inputs, the response of a circuit to a general AC signal is important.

Depending on the combination of circuit elements R, L, and/or C, the driving emf

and circuit current will in general be out of phase with each other.
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Phasor projections along the vertical =»current / voltage at time = t

Resistive L.oad

For the above emf / resistor only circuit:

E—-v, =0

L Vg = E_Cos(aw,t) =V;Cos(aw,t)




I =\%Cos(a)dt): I.Cos(at) | V., =IR

R

Current and voltage are in phase.

Capacitive Load

Using the AC emf with a capacitor:

i. =1Cos(w,t) Q. = j idt :LSin(a)dt)

Wy

q=Cv=>V, = LSin(codt)
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Defining the capacitive reactance c a)d C

V. =V_.Cos(m,t —%)

= Voltage lags current by 90 degrees

Then since VC :VCCOS(a)dt + ¢) ¢ - _%

VC — ICXC



Inductive Load

AC source and inductor only:

V, = —L% = lwLSin(w,t)

X, =4l

Defining the Inductive reactance as

T
v, = loLCos(w,t+—)
2 =>Voltage leads current by 90 degrees

Then since VL :VLCOS(a)dt + ¢) > ¢ - +%

AndVL — IL>(L
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E=E Cos(o,t+¢) 1=I1Cos(w,t)

In general:

| and ¢

To be determined.

The Phasor algebra looks like:

E —V.-V, -V, =0

From Kirchhoff's Rule,

V

The currentand ¥ R are in phase and the phase angle between current and emf is ¢ .

E2=V.2+(V, =V.)2 =1 R+1%(X, - X.)?
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The impedance is: L = \/R
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From the figure, the phase angle ¢ IS:

Tan(¢) =VL\;NC‘ -2 EXC
R

Three cases are as follows:

1) Inductive circuit ¢ > O Voltage leads current

¢ <0
=0

3) Resonance state ¢ Voltage and current are in phase.

2) Capacitive circuit Voltage lags current

Starting the emf at low frequency and scanning to higher values of a)d will produce an

observable phase shift in I relative to E as the circuit moves from a capacitive circuit



o Wy = =
to an inductive circuit across the resonance point at d LC

Power

For the RLC circuit, the phase difference between voltage and current in both the
inductor and capacitor means that the average power transferred to these elements is zero
and the average power dissipated by the circuit is due solely to the resistor:

2
P = iR = I2RSin?(w,t - ¢) :%IZR — % R = (Iys)’R

P = (IRMS)ZR

Using RMS current =» power is calculated just like DC.

— E R
P = (IRMS)ZR :$ IRMSR — ERMSIRMSE

; = Cos(¢) = Power _ factor

R=Z = =0 e, resonance

Maximum power is transferred to R at resonance.

0
For inductors or capacitors, ¢ — igo and no average power is dissipated.



Resonance

Driving an RLC circuit at resonance condition produces output current and voltage

amplitudes that are maximal. The condition for resonance is: a)Driving — a)O
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Notice as the damping R is reduced the resonant amplitude peaks become larger and
have narrower half-width. The series RLC is a useful bandwidth filter circuit near the
resonance frequency.
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