Inductors and Inductance

Circuit elements that produce magnetic fields and have inductance have application in
stabilizing currents, oscillators and power.

An ideal solenoid is the inductor prototype. Inductance is defined:

LEN—.CD N= #_of turns
i

The SI unit of inductance is the Henry. 1H= lezA_1

N (D is the flux linkage. Inductance is: flux linkage per unit current.

E.g., Ideal Solenoid:

B =y ni

I here is turns per unit solenoid length.
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Z o 'Llon A In units of henry/meter.

Note the units of permeability are, therefore, henry/meter and recall from capacitance
that the units of permitivity are farad/meter.




Self Induction

di
Given an inductor and given a changing current d { within its coils, this changing
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current produces a changing B in the inductor, and therefore a self-induced emf.

The induced current direction is such that the induced magnetic field produced from

this current counters whatever change is occurring in the inductor flux.
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For steady currents, the induced emf is zero.

For an ideal inductor, the resistance of the wire material is negligible, and the voltage
across the inductor is the self-induced emf.

If current is steady the inductor behaves as a short with zero voltage drop.

In practice, real inductors may be modeled by the series combination of an inductor
resistance outside the region of changing magnetic fields plus an ideal inductor.

Mutual Inductance

Consider interactions between two inductors in 'close' proximity. As current in inductor
#1 changes in time, this produces a changing magnetic field in inductor #1 and therefore
a changing flux in nearby inductor #2. Changing flux in inductor #2 produces an emf in
inductor #2. This is mutual inductance.

Similarly, any changes in inductor #2 current will induce an emf in inductor #1.
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The mutual inductance of inductor 2 with respect to inductor 1 is:

_ N,®,,

I As with self-inductance, M is characterized by geometry.
1
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di d®
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dt dt

di

dt Induced emf in inductor #2 from changing current in #1
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Similarly dt

Usually a small-unwanted effect in circuitry, mutual inductance is also the way step-up /
step-down transformers operate.



Magnetic Field Energy Density

= UB
The energy stored in an inductor is magnetic field energy. u 4
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Which, given Z o /Ll On A for a solenoid, this reduces to u 2 H On !
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Using B _ :uon ! gives: 2 IUO Energy density of magnetic field.

With the presence of magnetic material permeability H , then 2 u

RL Circuits

In an approach analogous to what was done with charging/discharging in an RC circuit,
the current response in an RL circuit may be evaluated starting from Kirchhoff's rule:

Recall the RC circuit results as follows:

E-iR-2 -0
C

Q. 1, E_,
dt RC~ R

Charging Q — CE(I T 8_%) T = RC
4
Discharging Q — Qoe ‘



In an RL circuit, the inductor initially appears as open and eventually t—> 00 as a short.
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i(t)= N (1-e 4) T= % = Inductive Time Const.

The voltage on the inductor is a maximum to start and exponentially tends to zero:

Using Kirchhoff's loop rule, the resistor voltage is therefore:

V.=E-V, :E—Ee_% :E(l—e_%)

Zero to start and asymptotically tending to E as the inductor appears to short.
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i(t) = ioe_% = %e_%

Removing the circuit emf,

Inductor Energy

E—iR—L%_

The RL circuit differential equation is dt

0

E—iPR-Li%

Multiplying this equation by current dt

0

These energy terms from left to right are:

1) Rate at which energy is delivered to the circuit by the power supply
2) Rate at which thermal energy is produced by resistor heating
3) Rate at which energy is stored in the inductor magnetic field.

au, . .di 1,
The last of these is: At = Li E > UB — ELZ




LC Oscillators

Directly analogous to the mass-spring oscillating mechanical system, the electronic
counterpart is that of an inductor-capacitor oscillating circuit.

Oscillations are electromagnetic oscillations of capacitor electric fields and inductor
magnetic fields.

The circuit has all the properties of an oscillating system including a resonance driving

frequency, in this case @ = 1/A/LC vs. @ =~k /m for the mechanical system.
-1
A correspondence of L—m and C—k is made.

Solutions to the differential equations describing the capacitor charge q (t ) may be

extracted from the mechanical system solutions by making the appropriate variable
substitutions into those results.

Simple Harmonic Oscillation

A capacitor charge that is periodic or repeats in regular time intervals, and is a sinusoidal
or co-sinusoidal function of time is referred to as simple harmonic in time.

q(t) = QCos(wt + @)

Q is the amplitude and is the maximum +/- capacitor charge.

(0 is the angular frequency of the oscillator and related to the frequency by o=27f

(I) is a phase factor or phase angle in units of radians.

f is the frequency or number of oscillations per second. Units of f are Hertz, Hz.



LC Circuit < Mass-Spring Analogy

Newton's 2" Law for the mass-spring oscillator is:

dx = d2

d ! d { 2" order diff. eqn.

Try x(t) — xm COS(a)t) as a solution
x(t) =-awx, Sin(wt)
X(t)=-w’x,Cos(wt)

—ma’x, Cos(wt) +kx, Cos(wt) =0

Substituting:

This equation is true iff w = V k / m

From the circuit energies, and conservation of energy without resistive damping,
electromagnetic oscillations take place as follows:

2
E = lLi2 + 1a” =Total Energy = const.
2 2 C -

di qdq
dt C dt

E=0=Li
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Using L—>m & C— k , then q —> X is also appropriate.

For the circuit oscillator, 'kinetic' and 'potential' energies are the energies within the
inductor and capacitor respectively. The capacitor is spring like in its electric potential
energy, inductance mass like, and current a 'velocity' term.

q(t) = QCos(at + ¢) w=1/JLC
i(t) = % = —wQSin(wt + @) = —1Sin(wt + @)

[ = wQ = current _amplitude

Let ¢ _ O and 'extend the mass', i.e., charge the capacitor to its full charge:

q(t=0)=0 q(t) = QCos(at)

i(¢) = —ISin(ot) i(t=0)=0



The system oscillates:
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Initially:
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From stage (d) back to stage {a): capacitor
charges with onginal polarity, current
Nlows clockwise and decreases

pudishing as Addson Wesley,

¢ = [0Cos(@n] - 0/
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i° = EL *[—ISin(wt)]” =0

= Y20
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[OCos(wt)]” =0
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The system evolves periodically transferring energy between the capacitor electric field
and the inductor magnetic field as shown.

Both 'kinetic' and 'potential' energy peaks occur twice over the course of 1 period [T] .

Since W = 1/ V L C the total energy at all times is:

E=Uy(0)+Uy(0) = - 0*Sin’ (@ + )+ Cos* (@t + )} = - ~0°

The electromagnetic energy is a constant provided resistive damping is absent.

RLC Circuits, Damped Harmonic Oscillations

Most non-driven oscillating systems will come to rest after a finite amount of time due to
dissipative losses. In the RLC circuit, the resistor damps the LC oscillations causing
exponentially decaying oscillation amplitude.

E=ri¥ 99 _ pp
dt C dt

i’ Ldt LC

2
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Letting ZY = R/L and with 0)02 =1/LC



G+20+w, q=0 () = de™

As a solution try: q
P’ Ae™ +2yPAe” +w,’ Ae™ =0

P’ +2P+w,” =0

Pz—yi\/yz—a)oz

2 2
(t) _ Ae(—?”r y -0y )t
q - Or
2 2
(=y—7 —awy" )t
q(t) = Be
The general solution is a linear combination of the two possibilities:

g(r)=e"{4e" " 4 Be VT

2 2 2
Three cases exist depending on whether 'YZ <0y , ’YZ > @ , Or 72 =0




Case 1 Underdamped Solution:

L
y2<0)02 5 R<2\/g

Q(t) _ 6_74 {Aei( a)02_7/2)*t n Be—i( %2_72 )*t}
g(1)=e"{(A+ B)Cos(Jw,” — 7* )t + (A - B)iSin(yJw,” — y* )1}

q(t)=e"{A'Cos(w't) + B'Sin(w't)}

With initial conditions (0) = Q and i(0) = 0,
A'=Q

B'o'-A'y=0

B'=AYo'=Q {y/o'}

¢(1) = Qe ™ {Cos(w't) + - Sin(w'1)}
)
Wishing to write something like:
0)0 N '
q(1) =0~ e {Cos(@'t+9)]

¢=-Tan™ L'
@

We find the phase angle ¢ must be:



Proving this requires:

2 (Cos(e't +$)} = Cos(a't) + L Sin('t)
W 0]

From trigonometry the LHS is

Do 1Cos('t)Cos(p) — Sin('t)Sin(p)}
@

Cos(¢) = Cos{Tan™ e
@'

The reference triangle is: 7/2 + a)|2
o Y
@'
0)':\/6{)02—7/2 5 \/7/2+a)v2 :a)o
Cos(¢) =2, Sin(¢)="7
(OR > @,
From which,

D (Cos(a't +¢)} = Cos(@'1) + L. Sin(e'1)
W 0



q(t) = Qw—o'e_” {Cos(w't+¢d)y ¢=-Tan" L'
@ @

The oscillation amplitude is decaying exponentially in time.

Case 2 Critically Damped Solution:

L
Y2=(002-)R:2\/g

In this case 0" is identically zero and we can evaluate the limiting form of:

— - ' L . '
q(t)=Qe " {Cos(w't) + e Sin(w't)} As o' S 0.

'—>0

Lim{Qe™[Cos('t) +lSm(0) 1)]}
'

The cosine term goes to 1 in the limit and the sine term is:

ng{ -Sin(@'t)} = le{ *Sm('a) )
w —> w

p=n

q(t) = Qe " {1+ n}

The circuit damps to equilibrium as quickly as is possible without oscillation about the
equilibrium point.



Case 3; Overdamping:

L
y2>0)02-)R>2\/g

(1) = Qe {Cos(a't) + %Sin(a)‘t)}

Starting with

W'= \/a)02_7/2 :i\/7/2 _a)oz

Since
' ei(ix) + e—i(ix) ex + e—x
Cos(ix) = = = Cosh(x)
2 2
And
o ei(ix) i) ex . e—x

Sin(ix) = - = — = iSinh(x)

21 21

g(t) = 0e " {Cosh(y]y” — w, 1)+ %Sinh(\/ v —w, 1))

(1) = Q% ¢ {Cosh(@"t + §))

"n__ 2 2
@ —\/7/ — ),
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The underdamped response of the ascillator

'-.___P?E rdamped iz described by the equation:

a =eacoslet - o

Critical
Damping

Time
1 E\ {3.3”3}

One-half of
critical
damping

Ozcillator with resonant
frequency 10 radss
started from rest.

After Bargerf0lsson

One-tenth of
critical
darping



