Wave Motion
Wave types:

1) Mechanical Waves - Described with Newtonian Mechanics

2) Electromagnetic Waves - Arrived at Using Maxwell Equations

3) Matter Waves - Treated Within the Framework of Quantum Mechanics

Mechanical waves like sound waves, waves along a rope or on a surface, and the waves
in a lake consist of disturbances that displace the medium through which they travel.

Such waves transfer energy from one location to another utilizing the medium.
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Mechanical waves are categorized by the direction in which the molecules of the medium
are displaced relative to the propagation direction as a pulse moves through the medium.

1) Transverse Waves - Elements of the medium are displaced perpendicularly to
the wave propagation direction.

2) Longitudinal Waves - Medium elements are displaced parallel to the wave
propagation direction.

3) Surface Waves - Displacements are both longitudinal and transverse.




The Scorpion:

Within the solid earth, longitudinal waves propagate from point to point faster than
transverse waves. As a hapless Beetle bug moves both types of waves are generated in
the ground. A nearby Scorpion will first detect the longitudinal wave indicating the
Beetles direction and the time interval between this event and the transverse wave arrival
is used by the computationally adept Scorpion to fix a distance to this Beetle snack:

Speeds near the surface are: Transverse V ~ 50 m/s; Longitudinal V ~ 150 m/s
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Traveling Waves

Consider a non-reflected transverse wave generated by a source oscillating in simple
harmonic motion. Let the wave propagate in the +X-direction without energy loss:

Elements of the medium are displaced vertically according to the wave function:

y(x,t) = ASin(kx — wt)

A Is the magnitude of maximum displacement w.r.t. equilibrium: the Amplitude.

_2r
k Is the Angular Wave Number in units of radian/meter. k - /1

@ Is the Angular Frequency: w = 27# .

A

Is the Wavelength of the wave: Crest to crest distance for example.

(kx T a)t) Is the Phase in radians.




For non-dispersive waves where o # C()(t ) , then a constant phase implies that for
increasing t , X must also increase, i.e., the wave J/(X, t) = ASZI’l(kX - C()t)

represents a wave moving in the +X direction.

Other wave parameters are:
1) Cycle - One complete medium element oscillation.
2) Frequency f - Number of cycles occurring per second.

3) Period T - The time interval between repetitions of the wave shape.
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At time [ = O , y(x,O) — ASln(kx) is the amplitude of the wave at

any given X coordinate. For a periodic wave, this is also the wave amplitude at one
wavelengths distance:

y(x,0) = ASin(kx) = y(x+ 4,0) = ASin(k(x+ 1))

From the sine of a sum of two angles the condition above is true if:

kA =2rx k=2r/A



Frequency is related to the wave angular frequency and the period of the wave as:
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Wave Velocities:

The transverse velocity of a medium mass element resulting from the passage of a
transverse mechanical wave is given by the partial derivative of the position function for

that element with respect to the variable Z :

v(x,t) = ASin(kx — art)
u(x,t)= %ASin(kx —ot) =—wACos(kx —wt)

Further, for (kx o a)t ) constant, the propagation velocity may be found as:
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Generally, the wave velocity depends on the medium elasticity and the medium inertia.




Applying Newton's 2™ Law to a transverse wave on a string, we can derive the
propagation velocity in terms of the string tension and its linear mass density:

Consider a snapshot of the string:
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In the limit of small angles theta,

From geometry, 29 * R = AZ

v=_1
Giving the velocity as ILl

A=Y
Given this and f fixed by the driving source, the wavelength is A



Wave Equation in One-Dimension:

The wave equation is a second order partial differential equation, which if it derives
from the physics of a particular problem carries the implication that a propagating wave
solution exists.

A wave equation for the transverse wave on a string results from Newton's 2" law:
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In the limit as AX becomes infinitesimal and for small angles e,
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Energy Transport:

The energy of the wave is in the form of kinetic energy as string mass elements move

with transverse velocity u(x ’ { ) =-wACos (kx — ot ) and in the form of

. 2
elastic potential energy as the string is stretched PE Elastic ¢ [Sﬂ" etChlng ] .

1 1
d(K)= 5 udx[—wACos(kx — o) = 5 A’ 0° udx * Cos® (kx — ot)
Kinetic energy is a maximum if (kx o C()t) is zero. This is the point at which the

string is crossing the equilibrium position and y ('x ” { ) is zero.

The string is also maximally extended when y ('x ” t) is zero and therefore the

potential energy is a maximum as the mass element udX passes through equilibrium.
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When the string mass element is at maximum amplitude its transverse velocity is zero
and the string extension is zero. Kinetic and potential energies are zero at this location.



Time variation of the kinetic energy is:
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Averaging this to obtain the average rate of kinetic energy transported:

= lAza)z,quosz(kx —t)
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The average of the cosine-squared function is:
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The average rate for potential energy transport equals the rate of kinetic energy transport.

dK|  d(PE)
dt AVE dt AVE

The average power transmitted by the wave is then:

1
_ Ll o2
PAVE o 9) Ao HY The dependence here is:

lLl 5 v Depend on the material and the string tension.

y m? @ Depend on the driving force that produces the wave.

The energy transported is proportional to the square of the wave amplitude.

Intensity

Intensity is the energy crossing perpendicularly through a unit surface area per unit time.

In one dimension, such as with a transverse wave moving along a rope, the unit area is
fixed in time [cross-section of the rope] and both the intensity of the wave and its
amplitude are constant neglecting losses.




For a point source in a 3-D isotropic medium, waves propagate outward spherically and:

J

4 T 2 I' is distance from the source. This falls off as 1/ 1‘2

With power = energy / time, intensity is proportional to the square of amplitude A%
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Further intensity is proportional to 1/1”, such that

1 2
—oc A4
’,.2 Amplitude falls off as 1/r away from the source. [No losses]

Py = L A*0® v

Lastly, since the power of the wave is: 2

]ocf2

Intensity is proportional to f2 for mechanical waves.

Superposition / Interference / Phasors

The principle of superposition states that for two or more waves overlapping in the same
region of space, the resulting wave in that region can be found by an algebraic sum of the
individual waves.

Depending on phase differences between the waves (i.e., the points in time at which
each wave crests may vary) the resulting wave may have an amplitude greater than any of
the incident waves or it may be less than the incident wave amplitudes and possibly zero.




Phasor Addition:

Phasors are vectors with magnitude equal to wave amplitude and which rotate clockwise

about the origin with an angular velocity equal to the waves angular frequency M.

Projection of a phasor onto the vertical axis gives the same analytic form as a propagating

wave: yl (‘x’ t) — yl,maxSin(kx o a)t)
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The projection onto the vertical axis has range B y 1,max < y 1 < +.y I,max

To superpose a second wave of differing phase, its phasor is added to the first resulting in

' I | .
a wave having the form Y (‘x9 t) =V m Sln(kx — Ol + IB) .
'
y m Is the amplitude of the superposition wave.
p perp

ﬂ Is the phase shift relative to yl (X, t) = yl,max Sll’l (kx B a)t) .

Example:

y2(x9t) — y2,maxSin(kx_a)t + ¢)

(I) > (0 2 the 2" wave 'lags' the 1% wave. 4) < 0 2 the 2" wave 'leads' the 1* wave
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Consider interference between two waves with the same amplitude and wavelength
moving in the same direction:

v, (x,t)=y, Sin(kx— wt)

v, (x,t) =y, Sin(kx — ot + @)
Orienting the first Phasor along the horizontal simplifies the vector addition problem
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The resulting wave is: y' (x9 t) — y'm Sln(kx —l + ,B) Where

v =y, (+ Cos(@)]* +[y,, Sin(@)]?



y' = \/ym2 (1+2Cosp + Cos’p+ Sin“p) =y, \/2(1 + Cos @)

Since C0S2 ﬂ - = COS(D
2 2
y' =2y Cos kit
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The phase of the superposition wave is
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The resulting superposition is:

y'(x,t)=y" Sin(kx—owt+ f)= 2ymCOS§[Sin(kx — ot + %)}

The amplitude is a maximum if (I) = () corresponding to fully constructive interference.

The amplitude is zero for (I) = T corresponding to fully destructive interference.

Intermediate destructive interference takes place when O< (I) <T.




In terms of a shift in wavelength between the two waves, the fully constructive

D
interference =¥ zero shift: Shl“ﬁ N 2 77 =0
A

Shift =2~

T

For fully destructive interference the wavelength shift is:

Vm ‘ =9.8mm and ¢ = 100°

As a numeric example, let

Find amplitude, type of interference and wavelength offset between the two waves.

y',=2 ymCOS% 2*(9.8mm)Cos % =13mm => Intermediate

180 _ |1
— A% -—1
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/1 27 3.6

Phasor example: Let

v, (x,t) = (4.0mm)Sin(kx — o)

Shift =

v, (x,t) = (3.0mm)Sin(kx — ot + g)

Orienting wave 1 along the X-axis, and drawing the 2" Phasor lagging at 60 degrees
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\ T LT
‘y max‘ = (yl,max + yZ,maXCOS 3)2 + (yz,maxSln ?)2

V'] = 4/ (4.04+3.0Cos %)2 +(3.08in %)2 — 6.1mm
V3
: 3.08in—
B=Tan™ Vertical | =Tan™ 3 |-0.44rad
Horizontal | 4.0+3.0Cos "

!
y (.x, t) lags yl (.x, t) by 0.44rad and the superposition is:

V'(x,t) =(6.1mm)Sin(kx — awt + 0.44)

Standing Waves

Consider the interference between two traveling waves of equal wavelength and
amplitude, but traveling in opposite directions.

In this case, a standing wave is created that oscillates in place without propagation hence
the term 'standing'.

The interference results in points along the string where the string is stationary termed
nodes and points which oscillate with maximum + amplitude referred to as antinodes.



Note that nodes and antinodes are stationary. There is a local energy transfer between the
nodes of a standing wave, but since no energy flows beyond each nodal point, standing
waves do not transfer energy like traveling waves.
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The location of node and antinode points may be determined as follows:

v, (x,t)=y, Sin(kx—wt)

v, (x,t) =y Sin(kx+ ot)

V'(x,t) =y, (Sin(kx —wt) + Sin(kx + wt))
y'(x,t) =2y Sin(kx)Cos(wt)
Amplitude= 2y, Sin(kx)|

Nodes occur when kx=nr with n ={0,1,2...}

T
Antinodes occur when =n 2 with n ={1,3,5...}



Figure showing one cycle for a standing wave with 3-antinodes.
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Transverse Standing Waves & Resonance

For a string between two fixed boundaries, standing wave resonance is setup along the
string due to the boundary reflected waves interfering along the string.

The frequency at which a resonance occurs depends on the distance between the
boundaries and the wave propagation velocity (string tension and mass per unit length).

A half-integral number of wavelengths contained within the boundary points will
produce a resonant standing wave condition:

) With n ={1,2,3...}

f= 7 = ”2—L Where n ={1,2,3...}

n = 1 2 Fundamental mode or 1% Harmonic
n =2 < 1% Overtone or 2" Harmonic

n =3 < 2" Overtone or 3" Harmonic



The collection of all oscillating modes is referred to as a harmonic series.

Each particular resonance is called a normal mode of the system.

N A N 1
I E Fundamental frequency, f, L= —ﬂq
I M2=L | 2

(ayn=1
N A N A N
| | Second harmonic, f, L= z ﬂ"l
[ I First overtone 2
K——2\2=L ——>

byn=2

A N A N 3

J:V A N | Third harmonic, f, L=— /11
[ | Second overtone 2
fe— N2 =L —————————— 3

cyn=3
N A N A N A N A N L 4
] | Fourth harmonic, £, - E ﬂ"l
| |

Third overtone

g dN2 = [ ————>]
(dn=4

Copyright & 2004 Pearson Education, Inc,, publishing as Addison Weshey,

V

l where V is the wave velocity. For a string,
1
y = 7

h . . ..
The nt - harmonic has wavelength determined by the condition 2 " and

The fundamental frequency is 1

V

fn=/1—=nf1

n

the corresponding normal mode frequencies are




