Chapter 2 Evolution: Constructing a Fundamental Scientific Theory

The context for Darwin's Theory

- Since Aristotle, the predominant worldview was of *immutability*.
- hierarchy of plants and animals, - humans showed the greatest perfection and complexity

The Great Chain of Being

God Angels Kings/Queens Archbishops Dukes/Duchesses Bishops Marquises/Marchionesses S Earls/Countesses Viscounts/Viscountesses Barons/Baronesses Abbots/Deacons Knights/Local Officials Ladies-in-Waiting Priests/Monks Squires Pages Messengers Merchants/Shopkeepers

Tradesmen Yeomen Farmers Soldiers/Town Watch Household Servants Tennant Farmers Shephards/Herders Beggars Actors Thieves/Pirates Gypsies Animals Birds Worms Plants Rocks

The context for Darwin's Theory

- 1) Deep time
- 2) Earth is different now than before
- 3) That goes for flora and fauna too

Darwin drew on 5 scientific disciplines to generate his theory:

- Geology
- Paleontology (fossils)
- Taxonomy, Systematics
- Demography
- Evolutionary Biology

Geology: Reconstructing Earth's Dynamic History

Deep time uniformitarianism

Charles Lyell (1797 - 1875)

James Hutton (1726 - 1797)

Paleontology: Reconstructing the History of Life on Earth

Robert Hooke (1605 - 1703)

Fossils

Georges Cuvier (1769-1832) catastrophism

Taxonomy and Systematics: Classifying Living Organisms and identifying Their Biological Relationships

John Ray (1660) defined species, grouped organisms according to similarities

(1628-1705)

Taxonomy and Systematics: Classifying Living Organisms and identifying Their Biological Relationships

TAXONOMIC CATEGORY	TAXONOMIC LEVEL	COMMON CHARACTERISTICS
Kingdom	Animalia	Mobile multicellular organisms that consume other organisms for food and develop during an embryo stage.
Subkingdom	Eumetazoa	All major animals (except sponges) that contain true tissue layers, organized as germ layers, which develop into organs in humans.
Phylum	Chordata	Group of vertebrate and invertebrate animals that have a notochord, which becomes the vertebral column in humans and other primates.
Subphylum	Vertebrata	Animals with vertebral columns or backbones (including fish, amphibians, reptiles, birds, and mammals).
Superclass	Tetrapoda	Vertebrate animals with four feet or legs, including amphibians, birds, dinosaurs, and mammals.
Class	Mammalia	Group of warm-blooded vertebrate animals that produce milk for their young in mammary glands. They have hair or fur and specialized teeth.
Subclass	Theria	Group of mammals that produce live young without a shelled egg (including placental and marsupial mammals).
Order	Primates	Group of mammals specialized for life in the trees, with large brains, stereoscopic vision, opposable thumbs, and grasping hands and feet.
Suborder	Anthropoidea	Group of primates, including monkeys, apes, and humans, but not prosimians. They have long life cycles and are relatively large-bodied.
Family	Hominidae	Group of anthropoids, including the humans, great apes, and human ancestors. They have the largest bodies and brain sizes of all primates.
Genus	Homo	Group of hominids including modern humans, their direct ancestors, and extinct relatives (e.g., Neandertals). They are bipedal and have large brains.
Species	sapiens	Modern and ancestral modern humans. They have culture, use language, and inhabit every continent except Antarctica.
Subspec	ies sapiens	Modern humans alone.

Demography: Influences on Population Size and Competition for Limited Resources

(1798)

JOHN

1859. F. J.S.

Evolutionary Biology: Explaining the Transformation of Earlier Life-Forms into Later Life-Forms

Erasmus Darwin

Darwin's Contribution to the Theory of Evolution: Natural selection

Adaptation Adaptive radiation

Alfred Russel Wallace

- Competition between species
- Warning coloration
- Biogeography "The Wallace Line"

Since Darwin: Mechanisms of Inheritance

- Gregor Mendel (1856)
- Gemmules and blended inheritance
- Genes and allelesparticulate inheritance

With each passing generation, the advantageous feature is "blended out"

Since Darwin: Mechanisms of Inheritance

- Mendelian inheritance
- 1. Dominance and recessive
- 2. Law of independent assortment
- 3. Law of segregation

Genotype, phenotype,

Since Darwin: the Modern Synthesis

- Mendel + Darwin- mechanism for evolution and how traits are passed on (variation)
- "Gene pool" population genetics
- 4 causes of evolution:
 - Mutations, gene flow, genetic drift and natural selection

Since Darwin: the Discovery of DNA

- Watson and Crick (1953)
- chromosomes

