## Cantor's Disappearing Table

**Problem:** Start with a table length *L*.



Remove  $\frac{1}{4}$  of the table centered at the midpoint. The remaining pieces each have length less than  $\frac{1}{2}L$ .



Remove  $\frac{1}{8}$  of the table by taking two sections of length  $\frac{1}{16}L$  from the centers of the remaining pieces. The remaining pieces each have length less than  $\frac{1}{4}L$ .



Remove  $\frac{1}{16}$  of the table by taking four sections of length  $\frac{1}{64}L$  from the centers of the remaining pieces. The remaining pieces each have length less than  $\frac{1}{8}L$ .



Continuing this process indefinitely yields the following results:

Amount of table removed:  $\frac{1}{4}L + \frac{1}{8}L + \frac{1}{16}L + \frac{1}{32}L + \dots = \sum_{n=2}^{\infty} \frac{1}{2^n}L = \frac{1}{2}L$ 

Remaining lengths less than:  $\frac{1}{2}L$ ,  $\frac{1}{4}L$ ,  $\frac{1}{8}L$ ,  $\frac{1}{16}L$ , ..., so the remaining lengths are each tending toward zero.

**Question:** Will continuing this process cause the table to disappear, even though you have only removed half of the table? Why or why not?

Discuss your conclusions on a separate sheet of paper. This **extra credit** assignment is worth a maximum of 5 points and will be due on Monday, April 9, 2007. To receive full credit you must *analytically* justify your answer. Any conclusions you come to must be justified using techniques learned in this course.